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Physics 42200
Waves & Oscillations

Lecture 18 — French, Chapter 6

Spring 2016 Semester

Transmission Lines

¢ Atransmission line can be driven by a voltage source
at one end.

¢ Boundary conditions at the other end:
— Open circuit: I(L) = 0
— Short circuit: V(L) = 0
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Transmission Lines
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Transmission Lines

¢ Atransmission line can be driven by a voltage source
at one end.

¢ Boundary conditions at the other end:
— Open circuit: I(L) = 0
— Short circuit: V(L) = 0
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Longitudinal Waves in a Gas
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* Increased pressure on a volume of gas decreases its
volume

¢ Bulk modulus of elasticity is defined

K=-V—
av




Longitudinal Waves in a Gas

Equations of state for a gas:

— Ideal gas law: pV = NkT

— Adiabatic gas law: pV? = constant

¢ In an adiabatic process, no heat is absorbed

— Absorbing heat would remove mechanical energy from a system

— Propagation of sound waves through a gas is an example of an
adiabatic process

¢ Bulk modulus calculated from equation of state:
V¥dp +ypV?~tdV =0

dp
W—;YP/V
s
K= VdV Yp

2/21/2016

Longitudinal Waves in a Gas

¢ By analogy with the solid rod, we consider an
element of gas at position x of thickness Ax that is
displaced by a distance n(x):

x x + Ax

x+n x+n+Ax+An

Longitudinal Waves in a Gas

¢ Wave equation:
a’n _ 109%
dx? ~ v20t?
e Forasoldrod, v =,/Y/p
* Foragas,v=K/p=\yp/p

¢ Changes in pressure and density are very small compared
with the average pressure and density.

¢ At standard temperature and pressure, air has

¥ = 140
p = 101.3 kPa
p =1.2kg/m3

_ |(1.40)(101.3x103N/m?) _
v= T ke S 343m/s
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The Physics of Organ Pipes

Resonant Cavities

e Air under pressure enters at Fundamental Second Thind
firs hamnonic | | harmonic
the bottom hormonic \—‘ \—‘

— Entering air rapidly oscillates
between the pipe and the lip
— The lower end is a
displacement anti-node
¢ Top end can be open or
closed
— Open end is a pressure

node/displacement anti-
node

— Closed end a displacement
node/pressure anti-node

A=4L A=4L
T B
n=3

Wave Propagation

¢ The wave equation:
0%y 1 9%
ax%  v2ot?
* We worked out solutions that satisfied specific
boundary conditions.
¢ A general solution is any function that is of the form
y(x,t) = fx £ vt)

¢ Are these two pictures compatible?




Wave Propagation

¢ Solutions for normal modes:

. mmx
Yn(x,t) = sin (T) cos(wyt)

Thy

Wy, = ——

L
¢ Trigonometric identity:

1
sina cosff = > [sin(a + B) + sin(a — B)]
e This gives,

Y (x,t) = %[sin (ﬂ

L + wnt) + sin (ﬂ - wnt)]

L
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Wave Propagation

Yo, t) = %[sin (nl,ﬂ + wnt) + sin (? - wnt)]
e Write this as

Yo(x, t) = %[sin(k(x + vt)) + sin(k(x — vt))]
nm
k=T
* This is the equation for two sine-waves moving in
opposite directions.
* The text refers to these as “progressive waves”.
* The “standing waves” that satisfy the boundary
conditions are the superposition of “progressive waves”
that move in opposite directions.

Wave Propagation

* Waves can propagate in either direction.

Easiest to visualize in terms of a pulse, or wave
packet:

A~ 7
A Vi
W -—
If this disturbance is far from the ends, the effect is
the same as letting L — oo




Transmission Lines

¢ Atransmission line can be driven by a voltage source
at one end.

Boundary conditions at the other end:
— Open circuit: I(L) = 0
— Shortcircuit: V(L) = 0
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Transmission Lines

¢ Atransmission line can be driven by a voltage source
at one end.

¢ Boundary conditions at the other end:
— Open circuit: I(L) = 0
— Short circuit: V(L) = 0
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Wave Propagation

2y
yxt) = Z ay sin ("Lﬂ) cos(wpt — ay) @g\\
N

n=1 J’Q(‘
* Ingeneral, we could write )\\
o

y(x,t) = Z a, sin (@) cos(wpt — ay)

n=1
o
nmx
+ . by, cos (T) cos(wpt — ay)
=

* Inthe limit where the disturbance is very far from either boundary, the
Fourier sine transform is:

B(k) = J;w u(x) sin(kx) dx

o

* Similarly, we can define the Fourier cosine transform:
©

A(k) = f u(x) cos(kx) dx




Wave Propagation

B(k) = fmu(x) sin(kx) dx

Similarly, we can define the Fourier cosine transform:
A(k) = f u(x) cos(kx) dx
The original function is represented by:
1(* 1r*
u(x) = —f A(k) cos(kx) dk + —f B(k) sin(kx) dk
TJo TJo
If A(k) = A(—k) and B(k) = —B(—k) then we can make this more
symmetric:

u(x) = %J;w/{(k) cos(kx) dk + %J:w B(k) sin(kx) dk
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Wave Propagation

¢ To make this even more symmetric we can change
slightly the definition of A(k) and B(k):

B(k) = \/% f_iu(x) sin(kx) dx
1 (oo}
A(k) = Eiwu(x) cos(kx) dx

¢ Then,
()—ifwAk k. dk+waBk in(kx) dk
u(x =l (k) cos(kx) =) (k) sin(kx)

Wave Propagation

* Previously, we interpreted the coefficients a,, as the
amplitude of the normal mode with frequency w,
— wavelength A, = 2L/n
— wavenumber k,, = 2m/2, = nn/L
* Now, we interpret A(k) and B(k) as the amplitude
for harmonic waves with wavenumbers between k
and k + dk.
It can be important to decompose a pulse into its
frequency components because in real materials, the
nature of wave propagation can depend on the
frequency.




Example

e Consider a pulse that has a Gaussian shape:

—_/p__
1 2
=——¢ ¥ /2
@) \/Ee

¢ Special case:
— Peak positionisatx = 0
— Width of the peakisog =1

¢ Other Gaussian functions can be transformed into this
special case by linear change of variables.

* What is the continuous Fourier transform?
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Example
1 [ee]
B(k) = \/ﬁ f_mg(x) sin(kx) dx
* The Gaussian function g(x) is an even function:
gx) = g(—x)

¢ The function sin(kx) is an odd function:
sin(—kx) = — sin(kx)
¢ This integral must vanish...
B(k) =0

Example

1
1w0=7 s
N ooe"‘z/zcos(kx)dx
2w )_ o

(x) cos(kx) dx

¢ From your table of integrals:

*© T
— 2 —_p2
f e~ %" cosbxdx = [—e b"/4a
—o0 a

e Inthiscase,a=1/2andb =k

1 1
Alk) = % V2me K2 =

_p2
e—k?/2

V2

* This is a Gaussian distribution of wavenumbers k = w/v.




Notes about Fourier Transforms

¢ For the Gaussian pulse,

-x2/20?

g(x) NP
¢ The amplitudes of the frequency components are:
AGk) = g=e 712, Bl = 0

* When the pulse is narrow, o < 1, then the exponent

in A(k) is large for a large range of k

— Since w = v/k, a narrow pulse has a wide range of
frequency components.

Conversely, a wide pulse has a narrow range of

frequencies.
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Another Example

¢ A photon can be described as a localized oscillation:

E(t)
Eqy
t

-T ? +T

Atx =0, E(t) = {EO cos(wt) when |t| <T
otherwise
Att=0,E(x) = {EG C(l])S(kX) when [x| < cT

otherwise

E, cT
Ak = \/%fiﬂcos(kx) cos(k'x) dx

Another Example

E0 cT
Ak =— cos(kx) cos(k'x) dx
(k" N (kx) cos(k'x)

¢ Trigonometricidentity:
1
cosacosf = 3 (cos(a — B) + cos(a + B))
Eo [sin((k — k")cT) + sin((k + k")cT)

AW = = 1w k+k




Another Example
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