PURDUE D) eparRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 18 — French, Chapter 6
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Transmission Lines

* A transmission line can be driven by a voltage source
at one end.

 Boundary conditions at the other end:
— Open circuit: I(L) = 0
— Short circuit: V(L) = 0
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Transmission Lines

* A transmission line can be driven by a voltage source
at one end.

 Boundary conditions at the other end:
— Open circuit: I(L) =0
— Short circuit: V(L) = 0




Transmission Lines

* A transmission line can be driven by a voltage source
at one end.

 Boundary conditions at the other end:
— Open circuit: I(L) =0
— Short circuit: V(L) = 0

If L=1mandv =20cm/ns .. n=22 f: 150 MHz



Longitudinal Waves in a Gas
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* Increased pressure on a volume of gas decreases its
volume

 Bulk modulus of elasticity is defined

K=-V—
dv



Longitudinal Waves in a Gas

 Equations of state for a gas:
— lIdeal gas law: pV = NkT
— Adiabatic gas law: pVY = constant

* |n an adiabatic process, no heat is absorbed

— Absorbing heat would remove mechanical energy from a system

— Propagation of sound waves through a gas is an example of an
adiabatic process

e Bulk modulus calculated from equation of state:
V¥dp + ypVY~1dV =0
dp

FIan —yp/V
dp

K=—-V—-=
v Yp



Longitudinal Waves in a Gas

* By analogy with the solid rod, we consider an
element of gas at position x of thickness Ax that is

displaced by a distance n(x)

i
o -
e
T
g -
-

-
i
.

e
s
-

smssmessssEEE
***************************************:*

-

...
s

x+77+Ax+An

X



Longitudinal Waves in a Gas

Wave equation:
d’n 1 0%
dx?2 2 0t?
Forasoldrod,v =,/Y/p
Foragas, v =K/p=.yp/p

Changes in pressure and density are very small compared
with the average pressure and density.

At standard temperature and pressure, air has

Y = 1.40
p = 101.3 kPa
p = 1.2kg/m?3

=343 m/s

__ [(1.40)(101.3x103N/m?)
- (1.2 kg/m3)



The Physics of Organ Pipes




Resonant Cavities

e Air under pressure enters at
the bottom

— Entering air rapidly oscillates
between the pipe and the lip

— The lower end is a
displacement anti-node
 Top end can be open or
closed
— Open end is a pressure

node/displacement anti-
node

— Closed end a displacement
node/pressure anti-node
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Wave Propagation

The wave equation:

0%y 1 0%y

0x2 v2 ot2
We worked out solutions that satisfied specific
boundary conditions.

A general solution is any function that is of the form
y(x,t) = f(x £ vt)
Are these two pictures compatible?



Wave Propagation

e Solutions for normal modes:

Nx
v, (x,t) = sin (T) cos(w,t)
TNnv
W, = —
" L
e Trigonometric identity:

1 sin(a + ) + sin(a — )]

sina cosf = 2[

* This gives,
Vn(x,t) == [sm (@ + Wy ) + sin (nLLx — a)nt)]



Wave Propagation

Vn(x,t) = 2 [sm (ﬁ + wnt) + sin (? — wnt)]

Write this as

v (x,t) = L [sm(k(x + vt)) + sin(k(x — vt))]
nm

L
This is the equation for two sine-waves moving in
opposite directions.

The text refers to these as “progressive waves”.

The “standing waves” that satisfy the boundary
conditions are the superposition of “progressive waves”
that move in opposite directions.



Wave Propagation

 Waves can propagate in either direction.

e Easiest to visualize in terms of a pulse, or wave
packet:

%_/T %
.
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e |f this disturbance is far from the ends, the effect is
the same as letting L — oo




Transmission Lines

* A transmission line can be driven by a voltage source
at one end.

 Boundary conditions at the other end:
— Open circuit: I(L) = 0
— Short circuit: V(L) = 0
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Transmission Lines

* A transmission line can be driven by a voltage source
at one end.

 Boundary conditions at the other end:
— Open circuit: I(L) =0
— Short circuit: V(L) = 0




Wave Propagation

_(MIX 0,
y(x,t) = z a,, sin (T) cos(w,t — ay,) RN
n=1 \_/ JQ
In general, we could write '0\\0
- o mmx
y(x, t) = z a, sin (T) cos(w,t — a;,)
"=,
nmx
+ z b,, cos (T) cos(wnt — ay)
n=1

In the limit where the disturbance is very far from either boundary, the
Fourier sine transform is:

B(k) = J u(x) sin(kx) dx
Similarly, we can define the Fourier cosine transform:

A(k) = joou(x) cos(kx) dx



Wave Propagation

B(k) = Joou(x) sin(kx) dx
Similarly, we can define the Fou_roioer cosine transform:

A(k) = joou(x) cos(kx) dx
The original function is represe_n(:coed by:

u(x) = ljooA(k) cos(kx) dk + 1 jooB (k) sin(kx) dk
T Jo T Jo

If A(k) = A(—k) and B(k) = —B(—k) then we can make this more
symmetric:

u(x) = %JOOA(k) cos(kx) dk + %foo B(k) sin(kx) dk



Wave Propagation

 To make this even more symmetric we can change
slightly the definition of A(k) and B(k):
rOO

B(k) = \/T_nJ_oou(x) sin(kx) dx
1 ®
A(k) = \/T_nj_wu(x) cos(kx) dx

e Then,

1 1 (” _
E j_ooA (k) cos(kx) dk + \/ﬁ f_ooB (k) sin(kx) dk

u(x) =



Wave Propagation

* Previously, we interpreted the coefficients a,, as the
amplitude of the normal mode with frequency w,
— wavelength A,, = 2L/n
— wavenumber k,, = 2n /A, = nn/L

* Now, we interpret A(k) and B(k) as the amplitude
for harmonic waves with wavenumbers between k
and k + dk.

* |t can be important to decompose a pulse into its
frequency components because in real materials, the
nature of wave propagation can depend on the
frequency.



Example

Consider a pulse that has a Gaussian shape:

N
1

g(x) :\/TTT

e—xz/z
Special case:

— Peak positionisatx =0

— Width of the peakiso =1

Other Gaussian functions can be transformed into this
special case by linear change of variables.

What is the continuous Fourier transform?



Example

1 0.0)
Bk=—f x) sin(kx) dx
(k) NeT _Oog( ) sin(kx)
* The Gaussian function g(x) is an even function:
g(x) = g(—x)

e The function sin(kx) is an odd function:
sin(—kx) = — sin(kx)

* This integral must vanish...
B(k)=0



Example

1 co
A(k) = Ef g(x) cos(kx) dx
1 00)
=— | e **/2cos(kx)dx
21 J)_,

e From your table of integrals:

© T
2 2
f e~ %" coshxdx = |—e~b"/4a
o \]a

 Inthiscase,a=1/2andb =k

1 2 1 2
A(k) = —X VZT[B_k /2 — g~ k%/2
21T V2T

e This is a Gaussian distribution of wavenumbers k = w/v.



Notes about Fourier Transforms

For the Gaussian pulse,

—x?/20%

e

(x) =
7 V2mo
The amplitudes of the frequency components are:
_ 1 k2522 —
A(k) = 5=¢ , B(k) =0
When the pulse is narrow, o < 1, then the exponent
in A(k) is large for a large range of k

— Since w = v/k, a narrow pulse has a wide range of
frequency components.

Conversely, a wide pulse has a narrow range of
frequencies.



Another Example

A photon can be described as a localized oscillation:

E(t) 4
E,
-T 0 +T

Ey cos(wt) when |t| < T

i ®) 0 otherwise
Att =0,E(x) = {Eo cos(kx) when lel <cT
0 otherwise

EO cT
A(k") =— cos(kx) cos(k'x) dx
(k) == _cosCkx) cos(k'x)



Another Example

A(k") = cos(kx) cos(k'x) dx

EO cT
V 27-[ f_cT

e Trigonometric identity:

cosacosfB = %(COS(CX — B) + cos(a + B))
E, sin((k — k’)cT) sin((k + k’)cT)
Tl k=K T k+k

A(k') =



Another Example
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