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Transmission Lines

• A transmission line can be driven by a voltage source 

at one end.

• Boundary conditions at the other end:

– Open circuit: � � = �
– Short circuit: � � = 0
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Longitudinal Waves in a Gas

• Increased pressure on a volume of gas decreases its 

volume

• Bulk modulus of elasticity is defined

) = −� +,+�



Longitudinal Waves in a Gas

• Equations of state for a gas:

– Ideal gas law: ,� = -./
– Adiabatic gas law: ,�0 = �1��23�2

• In an adiabatic process, no heat is absorbed

– Absorbing heat would remove mechanical energy from a system

– Propagation of sound waves through a gas is an example of an 
adiabatic process

• Bulk modulus calculated from equation of state:

�0+, + 5,�0!"+� = 0
+,
+� = −5,/�

) = −� +,+� = 5,



Longitudinal Waves in a Gas

• By analogy with the solid rod, we consider an 

element of gas at position 6 of thickness Δ6 that is 

displaced by a distance 8 6 :
6 6 + Δ6

6 + 8 + Δ6 + Δ86 + 8
p1 p2



Longitudinal Waves in a Gas

• Wave equation:

;
8
+6
 =

1
�

;
8
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• For a sold rod, � = </=
• For a gas, � = )/= = 5,/=
• Changes in pressure and density are very small compared 

with the average pressure and density.

• At standard temperature and pressure, air has

5 = 1.40
, = 101.3	kPa
= = 1.2 kg mF⁄

� = ".GH "H".F×"HJK L&⁄
(".
	MN LJ⁄ ) = 343	�/�



The Physics of Organ Pipes



Resonant Cavities

• Air under pressure enters at 
the bottom
– Entering air rapidly oscillates 

between the pipe and the lip

– The lower end is a 
displacement anti-node

• Top end can be open or 
closed
– Open end is a pressure 

node/displacement anti-
node

– Closed end a displacement 
node/pressure anti-node



Wave Propagation

• The wave equation:

;
O
;6
 =

1
�
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O
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• We worked out solutions that satisfied specific 

boundary conditions.

• A general solution is any function that is of the form

O 6, 2 = � 6 ± �2
• Are these two pictures compatible?



Wave Propagation

• Solutions for normal modes:

O	 6, 2 = sin ��6
� cos �	2

�	 = ���
�

• Trigonometric identity:

sin W cos X = 1
2 [sin W + X + sin W − X ]

• This gives,

O	 6, 2 = 1
2 sin ��6

� + �	2 + sin ��6
� − �	2



Wave Propagation

O	 6, 2 = 1
2 sin ��6

� + �	2 + sin ��6
� − �	2

• Write this as

O	 6, 2 = 1
2 sin .(6 + �2) + sin .(6 − �2)

. = ��
�

• This is the equation for two sine-waves moving in 
opposite directions.

• The text refers to these as “progressive waves”.

• The “standing waves” that satisfy the boundary 
conditions are the superposition of “progressive waves” 
that move in opposite directions.



Wave Propagation

• Waves can propagate in either direction.

• Easiest to visualize in terms of a pulse, or wave 

packet:

• If this disturbance is far from the ends, the effect is 

the same as letting � → ∞



Transmission Lines

• A transmission line can be driven by a voltage source 

at one end.

• Boundary conditions at the other end:

– Open circuit: � � = �
– Short circuit: � � = 0
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Wave Propagation

O 6, 2 = ]3	 sin ��6
� cos �	2 − W	

^

	_"
• In general, we could write

O 6, 2 = ]3	 sin ��6
� cos �	2 − W	

^

	_"

+	] `	 cos ��6
� cos(�	2 − W	)

^

	_"
	

• In the limit where the disturbance is very far from either boundary, the 

Fourier sine transform is:

a . = b c(6) sin .6 +6
^

!^
• Similarly, we can define the Fourier cosine transform:

d . = b c(6) cos .6 +6
^

!^



Wave Propagation

a . = b c(6) sin .6 +6
^

!^
• Similarly, we can define the Fourier cosine transform:

d . = b c(6) cos .6 +6
^

!^
• The original function is represented by:

c 6 = 1
�b d(.) cos(.6) +.

^

H
+ 1
�b a(.) sin(.6) +.

^

H
• If d . = d −. and a . = −a(−.) then we can make this more 

symmetric:

c 6 = 1
2�b d(.) cos(.6) +.

^

!^
+ 1
2�b a(.) sin(.6) +.

^

!^



Wave Propagation

• To make this even more symmetric we can change 

slightly the definition of d(.) and a . :
a . = 1

2�b c(6) sin .6 +6
^

!^
d . = 1

2�b c(6) cos .6 +6
^

!^
• Then,

c 6 = 1
2�b d(.) cos(.6) +.

^

!^
+ 1

2�b a(.) sin(.6) +.
^

!^



Wave Propagation

• Previously, we interpreted the coefficients 3	 as the 

amplitude of the normal mode with frequency �	
– wavelength e	 = 2� �⁄
– wavenumber .	 = 2� e	⁄ = �� �⁄

• Now, we interpret d(.) and a(.) as the amplitude 

for harmonic waves with wavenumbers between .
and . + +..

• It can be important to decompose a pulse into its 

frequency components because in real materials, the 

nature of wave propagation can depend on the 

frequency.



Example

• Consider a pulse that has a Gaussian shape:

f 6 = 1
2� g

!h&/


• Special case:

– Peak position is at 6 = 0
– Width of the peak is i = 1

• Other Gaussian functions can be transformed into this 
special case by linear change of variables.

• What is the continuous Fourier transform?



Example

a . = 1
2�b f(6) sin .6 +6

^

!^
• The Gaussian function f 6 is an even function:

f 6 = f −6
• The function sin .6 is an odd function:

sin −.6 = −sin .6
• This integral must vanish…

a . = 0



Example

d . = 1
2�b f(6) cos .6 +6

^

!^
= 1
2�b g!h&/
 cos .6 +6

^

!^
• From your table of integrals:

b g!jh& cos `6 +6
^

!^
= �

3 g!k
&/Gj

• In this case, 3 = 1/2 and ` = .
d . = 1

2� × 2�g!M&/
 = 1
2� g

!M&/


• This is a Gaussian distribution of wavenumbers . = �/�.



Notes about Fourier Transforms

• For the Gaussian pulse,

f 6 = 1
2�i g

!h&/
l&

• The amplitudes of the frequency components are:

d . = "

� g!M

&l&/
,  a . = 0
• When the pulse is narrow, i ≪ 1, then the exponent 

in d(.) is large for a large range of .
– Since � = �/., a narrow pulse has a wide range of 

frequency components.

• Conversely, a wide pulse has a narrow range of 
frequencies.



• A photon can be described as a localized oscillation:

At 6 = 0, n 2 = onH cos �2 	when	 2 s /
0														otherwise

At 2 = 0,n 6 = onH cos .6 	when	 6 s �/
0														otherwise

d .′ = nH
2�b cos .6

wx

!wx
cos .y6 +6

E(t)

-T +T

t

Another Example



Another Example

d .′ = nH
2�b cos .6

wx

!wx
cos .y6 +6

• Trigonometric identity:

cos W cos X = 1
2 cos W − X + cos W + X

d .y = nH
2�

sin . − .y �/
. − .′ + sin . + .y �/

. + .′



Another Example

6		(��)

e = 4	��

. = 2�
e = 1.571	��!"
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