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Other Continuous Systems
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Equal and opposite forces squish the cube of elastic 
material.   Net force is zero so there is no acceleration.
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Other Continuous Systems

Suppose the force changes over distance Δ�…
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Other Continuous Systems

�� 	
��
	�� 	Δ� = 
�Δ� 	

��
	��	��

	�� =


�
	��
	��

���
��� =

�
��

���
��� � = �/


�
�

Δ� Δ�Δ�



Electrical Circuits

• First, consider one “lump” of a circuit:

• It is convenient to describe the resistor that is in 

parallel with the capacitor in terms of its 

conductance, � = 1/�′.
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Electrical Circuits

• Calculate the total impedance of the lump:

%& = �
%' = "()
%* = 1

"(+%, = 1/�
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Electrical Circuits

• Suppose the resistance, inductance, capacitance and 

conductance were distributed uniformly with length:

– Let �5 be the resistance per unit length, )5 be the 

inductance per unit length, etc…

• Consider the voltage on either side of the lump:
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Electric Circuits

• Current flowing through G’ and C’ is

∆3 = .(�)
%,58*5 = . � �

3 � + 	� = 3 � − . � �
93
9� =

3 � + 	� − 3(�)
	� = −. � �
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Electrical Circuits

• Voltage drop across the lump:
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9.
9� =

. � + 	� − .(�)
	� = −3 � -

9�.
9�� = − 939� - = -�	.(�)

�567�567�567

 567
.(�) .(� + 	�)



Electrical Circuits

• When we assume that the voltage is of the form

. �, � = . � 012�
9�.
9�� = −(�. �

• Using the previous result, 
��;
��� = -�	.(�) we get:
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9�.
9�� = 0

• Does this resemble the wave equation?

– Expand out -� = (�′ + "()′)(�′ + "(+5)
– When �5 and �′ are small, which is frequently the case 

then -� ≈ −(�)5+′



Electrical Circuits

• Wave equation:
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• Speed of wave propagation is

� = 1
)5+5



Current in a Transmission Line

• Speed of wave propagation depends on inductance 

per unit length and capacitance per unit length

• These depend on the geometry of the conductors

• Example:



Gauss’s Law

> ?@ ∙ B
C

	� = 2EFℓB = H1IJ1�K
L/

B is uniform everywhere on the Gaussian surface

Surface area is � = 2EFℓ
Linear charge density: M = H/ℓ

N
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Radius of Gaussian surface is F



Potential Difference and Capacitance

Work needed to move a charge between the 

conductors:
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Capacitance is defined by + = H/.
Charge inside is H = Mℓ
Capacitance per unit length: +5 = �OPQ
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Ampere’s Law

Ampere’s law: ∮^ ∙ 	ℓ = _/3
^ is uniform on the circular path of length 2EF:

^ = _/3
2EF

Radius of Amperian surface is F



Magnetic Flux and Inductance

Magnetic flux is defined:

`a = S ^ ∙ 	bT
C
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Inductance is defined: `a = )3
Inductance per unit length: )5 = cQ
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Wave Propagation in a Coaxial Cable

• Capacitance per unit length:+5 = �OPQ
YZ[ \�

\U

• Inductance per unit length: )5 = cQ
�O log

&�
&U

• Speed of wave propagation:

� = 1
)5+′ =

1
L/_/ = d

• In practice, the conductors are separated by a 

dielectric with relative permittivity LR so the speed of 

wave propagation is � = d/ LR



Transmission Lines

• Coaxial:

• Twisted pair: 

• Microstrip:

• Stripline:  

LR = 2.3, � = 0.66	d

LR = 2.1, � = 0.69	d

Type	equation	here.

� ≈ 0.6 − 0.8	d



Transmission Lines

• A transmission line can be driven by a voltage source 

at one end.

• Boundary conditions at the other end:

– Open circuit: v � = w
– Short circuit: . ) = 0

(I = �O�
Nx = 2E	� I

�' yI = I�
�'

? = 1									y = 100	z{|If ) = 1	} and � = 20 d} ?~⁄ …



Transmission Lines

• A transmission line can be driven by a voltage source 

at one end.

• Boundary conditions at the other end:

– Open circuit: v � = w
– Short circuit: . ) = 0

If ) = 1	} and � = 20 d} ?~⁄ … ? = 2									y = 200	z{|

(I = �O�
Nx = 2E	� I

�' yI = I�
�'



Transmission Lines

• A transmission line can be driven by a voltage source 

at one end.

• Boundary conditions at the other end:

– Open circuit: 3 ) = 0
– Short circuit: � � = w

(I = �O�
Nx = 2E	� I��/��' yI = (I�U�)�

�'

? = 1									y = 50	z{|If ) = 1	} and � = 20 d} ?~⁄ …



Transmission Lines

• A transmission line can be driven by a voltage source 

at one end.

• Boundary conditions at the other end:

– Open circuit: 3 ) = 0
– Short circuit: � � = w

If ) = 1	} and � = 20 d} ?~⁄ … ? = 2									y = 150	z{|

(I = �O�
Nx = 2E	� I��/��' yI = (I�U�)�

�'



Fourier Analysis

• Wave equation:

• Normal modes:

yI �, � = �I sin ?E�
) cos (I� − �I

(when yI 0, � = yI ), � = 0)

• The general initial value problem specifies the initial 

displacement and velocity at � = 0
• How can we represent the general solution as the 

sum of normal modes?
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Fourier Analysis

• The general solution can be expressed

� �, � = ��I sin ?E�
) cos (I� − �I

�

I��
• Initial conditions:

� �, 0 = � �
�� �, 0 = �(�)

• How do we determine the constants �I and �I?

• At � = 0 the general solution looks like this:

� �, � = ∑ Î sin IO�
'

�I�� where Î = �I cos �I



Fourier Analysis

• Fourier transform:

^� = 2
)S sin �E�
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• Really?  Let’s prove it by demonstration:

• At � = 0, � � = ∑ Î sin IO�
'

�I�� so we want to 

calculate
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Fourier Analysis

Use the trigonometric identity:

sin � sin � = 1
2 cos � − � − cos � + �
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This vanishes unless � = ? in which case,
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So we write:

�
' � sin �O�

' sin IO�
'

'
/ 	� = ��I ��I = �0	if	� ≠ ?

1	if	� = ?



Fourier Analysis

With this result, we can write
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Example

• How to describe a square wave in terms of normal 

modes:

� � = �+1	when	0 < � < M/2
−1	when M 2⁄ < � < M

Î = 2
MS sin ?�� 	�

N/�

/
− 2MS sin ?�� 	�

N
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Example

Î = 2
?E 1 � cos ?E

�̂ �
�

O
, ^� = �

�O, ^� = �
�O, ⋯

^� = 0, �̂ � 0, ^� � 0,⋯


