

Physics 42200 Waves & Oscillations

Lecture 17 – French, Chapter 6

Spring 2016 Semester

Matthew Jones

Other Continuous Systems

$$\frac{F}{A} = Y \frac{\Delta \eta}{\Delta x}$$

Equal and opposite forces squish the cube of elastic material. Net force is zero so there is no acceleration.

$$F(x) = AY \frac{d\eta}{dx}$$

Other Continuous Systems

Suppose the force changes over distance Δx ...

$$F(x + \Delta x) = F(x) + \frac{dF}{dx} \Delta x$$

Net force is

$$F(x + \Delta x) - F(x) = \frac{dF}{dx} \Delta x = AY \frac{d^2 \eta}{dx^2} \Delta x$$

Other Continuous Systems

• First, consider one "lump" of a circuit:

• It is convenient to describe the resistor that is in parallel with the capacitor in terms of its conductance, G = 1/R'.

Calculate the total impedance of the lump:

$$Z_{R} = R$$

$$Z_{L} = i\omega L$$

$$Z_{C} = \frac{1}{i\omega C}$$

$$Z_{G} = 1/G$$

$$X = R + i\omega L$$

$$Y(t) = V_{0} e^{i\omega t}$$

$$\Delta V(t) = I(t) X$$

$$\Delta I(t) = V(t) Y$$

- Suppose the resistance, inductance, capacitance and conductance were distributed uniformly with length:
 - Let R' be the resistance per unit length, L' be the inductance per unit length, etc...
- Consider the voltage on either side of the lump:

Current flowing through G' and C' is

$$\Delta I = \frac{V(x)}{Z_{G'+C'}} = V(x)Y$$

$$I(x + dx) = I(x) - V(x)Y$$

$$\frac{\partial I}{\partial x} = \frac{I(x + dx) - I(x)}{dx} = -V(x)Y$$

Voltage drop across the lump:

$$\frac{V(x + dx) = V(x) - I(x)X}{\partial X} = \frac{V(x + dx) - V(x)}{\partial x} = -I(x)X$$
$$\frac{\partial^2 V}{\partial x^2} = -\frac{\partial I}{\partial x}X = XYV(x)$$

When we assume that the voltage is of the form

$$V(x,t) = V(x)e^{i\omega t}$$
$$\frac{\partial^2 V}{\partial t^2} = -\omega^2 V(x)$$

• Using the previous result, $\frac{\partial^2 V}{\partial x^2} = XY V(x)$ we get:

$$\frac{\partial^2 V}{\partial x^2} + \frac{XY}{\omega^2} \frac{\partial^2 V}{\partial t^2} = 0$$

- Does this resemble the wave equation?
 - Expand out $XY = (R' + i\omega L')(G' + i\omega C')$
 - When R' and G' are small, which is frequently the case then $XY \approx -\omega^2 L'C'$

Wave equation:

$$\frac{\partial^2 V}{\partial x^2} = L'C' \frac{\partial^2 V}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 V}{\partial t^2}$$

Speed of wave propagation is

$$v = \frac{1}{\sqrt{L'C'}}$$

Current in a Transmission Line

- Speed of wave propagation depends on inductance per unit length and capacitance per unit length
- These depend on the geometry of the conductors

Example:

Gauss's Law

Radius of Gaussian surface is r

$$\oint_{S} \hat{n} \cdot \vec{E} \, dA = 2\pi r \ell E = \frac{Q_{inside}}{\epsilon_{0}}$$

 \vec{E} is uniform everywhere on the Gaussian surface Surface area is $A=2\pi r\ell$ Linear charge density: $\lambda=Q/\ell$

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

Potential Difference and Capacitance

Work needed to move a charge between the conductors:

$$V = -\int_{R_2}^{R_1} \vec{E} \cdot d\vec{r} = -\frac{\lambda}{2\pi\epsilon_0} \int_{R_2}^{R_1} \frac{dr}{r}$$
$$= \frac{\lambda}{2\pi\epsilon_0} \log\left(\frac{R_2}{R_1}\right)$$

Capacitance is defined by C=Q/VCharge inside is $Q=\lambda\ell$

Capacitance per unit length:
$$C' = \frac{2\pi\epsilon_0}{\log(\frac{R_2}{R_1})}$$

Ampere's Law

Radius of Amperian surface is r

Ampere's law: $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I$

 \vec{B} is uniform on the circular path of length $2\pi r$:

$$B = \frac{\mu_0 I}{2\pi r}$$

Magnetic Flux and Inductance

Magnetic flux is defined:

$$\phi_m = \int_{S} \vec{B} \cdot d\vec{a} = \frac{\mu_0 I \ell}{2\pi} \int_{R_1}^{R_2} \frac{dr}{r} = \frac{\mu_0 I \ell}{2\pi} \log\left(\frac{R_2}{R_1}\right)$$

Inductance is defined: $\phi_m = LI$

Inductance per unit length: $L' = \frac{\mu_0}{2\pi} \log \left(\frac{R_2}{R_1}\right)$

Wave Propagation in a Coaxial Cable

- Capacitance per unit length: $C' = \frac{2\pi\epsilon_0}{\log(\frac{R_2}{R_1})}$
- Inductance per unit length: $L' = \frac{\mu_0}{2\pi} \log \left(\frac{R_2}{R_1}\right)$
- Speed of wave propagation:

$$v = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = c$$

• In practice, the conductors are separated by a dielectric with relative permittivity ϵ_r so the speed of wave propagation is $v=c/\sqrt{\epsilon_r}$

Coaxial:

$$\epsilon_r = 2.3$$
,

$$\epsilon_r = 2.3, \qquad v = 0.66 c$$

Type equation here.

• Twisted pair:

$$\epsilon_r = 2.1$$

$$\epsilon_r = 2.1, \qquad v = 0.69 c$$

• Microstrip:

$$v \approx 0.6 - 0.8 c$$

• Stripline:

- A transmission line can be driven by a voltage source at one end.
- Boundary conditions at the other end:
 - Open circuit: I(L) = 0
 - Short circuit: V(L) = 0

If
$$L=1 m$$
 and $v=20 cm/ns$... $n=1$ $f=100 MHz$

$$n = 1$$

$$f = 100 MHz$$

- A transmission line can be driven by a voltage source at one end.
- Boundary conditions at the other end:
 - Open circuit: I(L) = 0
 - Short circuit: V(L) = 0

If
$$L = 1 m$$
 and $v = 20 cm/ns ...$

$$n = 2$$
 $f = 200 MHz$

- A transmission line can be driven by a voltage source at one end.
- Boundary conditions at the other end:
 - Open circuit: I(L) = 0
 - Short circuit: V(L) = 0

If
$$L = 1 m$$
 and $v = 20 cm/ns ...$

If
$$L = 1 m$$
 and $v = 20 cm/ns$... $n = 1$ $f = 50 MHz$

- A transmission line can be driven by a voltage source at one end.
- Boundary conditions at the other end:
 - Open circuit: I(L) = 0
 - Short circuit: V(L) = 0

If
$$L = 1 m$$
 and $v = 20 cm/ns$...

$$n=2$$
 $f=150 MHz$

• Wave equation: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$

Normal modes:

$$f_n(x,t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \delta_n)$$
(when $f_n(0,t) = f_n(L,t) = 0$)

- The general initial value problem specifies the initial displacement and velocity at t=0
- How can we represent the general solution as the sum of normal modes?

The general solution can be expressed

$$y(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \delta_n)$$

Initial conditions:

$$y(x,0) = u(x)$$
$$\dot{y}(x,0) = v(x)$$

- How do we determine the constants A_n and δ_n ?
- At t = 0 the general solution looks like this:

$$y(x,t) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$$
 where $B_n = A_n \cos \delta_n$

• Fourier transform:

$$B_k = \frac{2}{L} \int_0^L \sin\left(\frac{k\pi x}{L}\right) u(x) dx$$

- Really? Let's prove it by demonstration:
- At t=0, $u(x)=\sum_{n=1}^{\infty}B_n\sin\left(\frac{n\pi x}{L}\right)$ so we want to calculate

$$\frac{2}{L} \int_0^L \sin\left(\frac{k\pi x}{L}\right) u(x) dx = \frac{2}{L} \sum_{n=1}^\infty B_n \int_0^L \sin\left(\frac{k\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx$$

Use the trigonometric identity:

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\int_0^L \sin\left(\frac{k\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= \frac{1}{2} \int_0^L \cos\left(\frac{(k-n)\pi x}{L}\right) dx + \frac{1}{2} \int_0^L \cos\left(\frac{(k+n)\pi x}{L}\right) dx$$

$$= \frac{L}{2(k-n)\pi} \sin((k-n)\pi) + \frac{L}{2(k+n)\pi} \sin((k+n)\pi)$$

This vanishes unless k = n in which case,

$$\frac{1}{2} \int_0^L \cos\left(\frac{(k-n)\pi x}{L}\right) dx \to \frac{1}{2} \int_0^L dx = \frac{L}{2}$$

So we write:

$$\frac{2}{L} \int_0^L \sin\left(\frac{k\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = \delta_{kn}$$

$$\delta_{kn} = \begin{cases} 0 & \text{if } k \neq n \\ 1 & \text{if } k = n \end{cases}$$

With this result, we can write

$$\frac{2}{L} \int_{0}^{L} \sin\left(\frac{k\pi x}{L}\right) u(x) dx = \frac{2}{L} \sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin\left(\frac{k\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx$$
$$= \sum_{n=1}^{\infty} B_{n} \delta_{kn} = B_{k}$$

Example

 How to describe a square wave in terms of normal modes:

$$u(x) = \begin{cases} +1 \text{ when } 0 < x < \lambda/2 \\ -1 \text{ when } \lambda/2 < x < \lambda \end{cases}$$

$$B_n = \frac{2}{\lambda} \int_0^{\lambda/2} \sin(nkx) dx - \frac{2}{\lambda} \int_{\frac{\lambda}{2}}^{\lambda} \sin(nkx) dx$$

$$= \frac{2}{n\pi} [1 - \cos(n\pi)]$$

$$B_1 = \frac{4}{\pi}, B_3 = \frac{4}{3\pi}, B_5 = \frac{4}{5\pi}, \cdots$$

Example

$$B_n = \frac{2}{n\pi} [1 - \cos(n\pi)]$$

$$B_1 = \frac{4}{\pi}, B_3 = \frac{4}{3\pi}, B_5 = \frac{4}{5\pi}, \dots$$

$$B_2 = 0, B_4 = 0, B_6 = 0, \dots$$