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PURDUE DeparTMENT OF PHysics

Physics 42200
Waves & Oscillations

Lecture 16 — French, Chapter 6

Spring 2016 Semester
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General solution:

N

. [ nkm
xn(t) = Z asin| v cos(wyt — Oy)

k=1
Frequencies of normal modes of oscillation:

X km
wy = 2wq sin m

Fourier coefficients:

2 v nkr
ay cos 6y, = ﬁz x,(0) sin il
n=1
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aywy sin By = NZ %, (0) sin N+l
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Summary

s

* General solution:

©

. [kmx
y(x,t) = Z a sin { —— cos(wit — 6)
k=1
* Frequencies of normal modes of oscillation:
_kmv
Wy = L

* Fourier coefficients:

2 (b  (knx
ay cos 6y, :Zf y(x,0) sin - dx
0

. 2k  (knx
apwy sin 0y, = Zf y(x,0) sin - dx
o




Example

* When astring is plucked in the middle, what sound will it make?

L

« This is a question about the amplitudes of the different normal
modes of vibration.

y(x,t) = Z ay, sin <kl‘£) cos(wyt)

k=1
kmv
Wy = ——

L
2 (b  (knx
ak=zf y(x,0) sin o dx
0
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Example

¢ The initial shape of the string is the function:
F00 ={ 2Ax/L whenx < L/2
2A — 2Ax/L whenx > L/2
* Fourier coefficients:

2 (* ~ (knx
ak=zfof(x)sm<T>dx

L/2

2 . (knx d
=7 | f(x)sm<T> x

+2 L Foysi <kﬂx>d
- x) sin | — | dx
Ly, L

Example

* We have only two kinds of integrals:

f - [(knx dx = L kmx
Sin T X = ECOS T
J‘ - [knx J

X sin T X

L kmx N 1> [(knx
i Zzsin(




Example

 Itis often useful to use symmetries to simplify the
amount of work:

Left and right integrals will cancel.

a2=a4:a6=-..:0
b ,~/77?T><::§V

Left and right integrals are equal.
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Example

84 (% [(kmx
akzﬁfo xsin|—— dx

¢ Use a table of integrals:

. X 1 .
On J xsin(ax)dx = ——cos ax + —-sinax
a a”

44 km + 84 | [knm
a, = o cos > i sin >
¢ But we only care about k = 1,3,5,7 ...

84 84 8A 84

Y =72 T 92 502’ T 492’

Example

¢ These are the amplitudes of each frequency
component:
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The dominant frequency is

0. just w; = v /L.
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0. There are no even harmonics.
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Forced Oscillations

=
Usb vibration
=] generator
&

Experiment 1 —_—

.

One end of the string is fixed, the other end is forced
with the function Y (t) = B cos wt.
v(0,t) = B coswt
y(L,t)=0
The wave equation still holds so we expect solutions to
be of the form

y(x,t) = f(x) coswt
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Forced Oscillations

* This time we can’t constrain f(x) to be zero at both
ends.

* Now, let f(x) = Asin(kx + a)
— The constant k is just w/v.
— We need to solve for A and a

* Boundary condition at x = L:

. (wL wL
51n(—+a):0 > —+a=pnm
v v
_ wL
ap =pn -
e Conditionatx = 0:
B =A,sina,

Forced Oscillations

* Amplitude of oscillations:
B

sin(pw — wL/v)
* What does this mean?

— The driving force can excite many normal modes of
oscillation

Ap =

— When w = prtv/L, the amplitude gets very large




Forced Oscillations

p=1 p=2

T ‘fz‘w‘/Zn‘ c “‘S“éf1=a)/2‘n'
L=5m
v=10m/s
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Other Continuous Systems

* Longitudinal waves in a solid rod:

X X+HAX Notation:

* x labels which piece of the
rod we are considering,
analogous to the index n
when counting discrete
masses.

* 1 quantifies how much the
element of mass has
X+M X+AX+N+AN moved.

Recall that strain was defined as the fractional
increase in length of a small element: An/Ax
 Stress was defined as AF /A

* These were related by AF /A =Y An/Ax

Longitudinal Waves in a Solid Rod

X+AX

X+1 X+AX+N+AN
AF/A =Y An/Ax
* Force on one side of the element:
F, = AY An/Ax = AYdn/ox

* Force on the other side of the element:

a%n
Fz = Fl +AYWAX




Longitudinal Waves in a Solid Rod

X X+AX

X+1 X+AX+N+AN
* Newton’s law:
mij =F, —F
9% ’n
Fy —F = AYﬁAx = pAAx Frel

* Wave equation:
a*n _pd*n _ 19%
dx?2 Y dt2 ~ v2at?
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Longitudinal Normal Modes

¢ What is the solution for a rod of length L?
%n _ 1 9%y
dx? ~ v2 at?
* Boundary conditions:
— Suppose one end is fixed
n(0) =0
— No force at the free end of the rod so the stress is zero there.
Strain « stress, so the strain is also zero.
F = AYodn/ox
an _
O0xx=t B
* Look for solutions that are of the form
n(x) = f(x) coswt

v=.Y/p

Longitudinal Normal Modes

n(x) = f(x) coswt
* Inspired by the continuous string problem, we let
f(x) = Asin(kx)
¢ Derivatives:

a%n
a2 = Tk
a’n
3z = 0"
%n  1d% )

dx2  v2ot2




Longitudinal Normal Modes
f(x) = Asin (%)

This automatically satisfies the boundary condition at x = 0.
Atx =1L,dn/dx = 0:

0 L
o occos(w—)=0
v

. wL 1
e This means thatT =(n- 5)”
* Angular frequencies of normal modes are

T 1

wp =7 (=5)JY/p
* Frequencies of normal modes are
n—1/2

2L VY/e

Vp =

2/15/2016

Longitudinal Normal Modes

* Frequencies of normal modes are
n—1/2

oL vY/p

Lowest possible frequency:

- i
S % Vl_ﬂ ;
b,

Frequencies of Metal Chimes

* Suppose a set of chimes were made of copper rods,
with lengths between 30 and 40 cm, rigidly fixed at
one end.

* What frequencies should we expect if ~ ©

Y =117 x 10°N-m~2
p=896x10%kg -m™3

i
1 [117x 109N - m-? ng
V1741 896 x 10° kg - m—3 | em
= 2260 — 3010 Hz |

(highest octave on a piano)

L




Frequencies of Metal Chimes

« If the metal rods were not fixed at one end then the
boundary conditions at both ends would be:

an

— =0

dx

* Allowed frequencies of normal modes:
n
Vv, ==Y
n =37 /p

Open at Both Ends Harmonic ~ Wavelength A Frequency /
t "'= 1% 2L £
pSa < o

ec R
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