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Lecture 15 — French, Chapter 6

Spring 2016 Semester

Review of Coupled Oscillators

* General observations:

— Forces depend on positions x; of multiple masses
— Coupled set of differential equations

m; % = F(xqy, %, ., Xy)

¥ = EF(xvxz: s XN
— In the problems we will consider, F (x4, X5, ..., xy) is a linear

function of x;
X+A%E=0
(A—w’Dx=0
— If this is true then
det(A - w?D =0

— The eigenvalues of the matrix 4 are w?

Review of Coupled Oscillators

* Ingeneral, a system with N masses can have N distinct

eigenvalues

(A-wiu; =0
* There are N eigenvectors u;
¢ The eigenvectors are orthogonal:
U u; = Owheni #j

* If u; is an eigenvector, then so is a ; for any real number

a.
* The eigenvectors can be normalized so that

ﬁi " ﬁi = 1

ulu] = 6’-]




Review of Coupled Oscillators

* An arbitrary vector X can be expressed as a
linear combination of eigenvectors:

f = alﬂl + azﬁ,z + -+ aN'le
N

i=1
* How do we solve for the coefficients a;?
N N
ujtx =Zaiuj U =Zai6ij =q;
i=1 i=1
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Two Coupled Oscillators

¢ The spring is stretched by
the amount x; — x,

2 £ « Restoring force on
i pendulum 1:
Fi = —k(x; — x3)
/\j\ ‘ ¢ Restoring force on
/\l / /V\ pendulum 2:
X x Fp = k(1 = x2)

m
mi, + Tgxl +k(x; —x,) =0

m
_gxz —k(x; —x) =0

mx, +
27y

Two Coupled Oscillators

%1+ [(wo)?* + (wc)?]xg — (we)?x, = 0
¥ + [(wo)? + (0c)?]x — (W), = 0
* Eigenvalues are
w? = w3
Wi = (wp)? + 2(w)?
* Eigenvectors are

o1
-0
o1
Uz = ﬁ(-ﬂ)




Two Coupled Oscillators

* Normal modes of oscillation:
41 (t) = Uy cos(w;t)
q2(t) = Uy cos(w,t)
¢ General solution:
x(t) = AU, cos(wt + @) + B U, cos(w,t + B)
« Initial conditions: ¥(0) = %o, ¥(0) =
Uy~ %o =Acosa
Uy Xy = Bcos P
771 . 170 = _A(l)l sina
U, - Vg = —Bw, sin
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Many Coupled Oscillators

* Equation of motion for mass n:
N T
myy =F, = ?[(3’7”1 =) = Wn = Y1)l
In + 2(“’0)23’71 - (wo)z(J’n+1 +Yn-1)=0
RE—
(wo)* = me
* We can construction solutions of the form y, (t) = i, cos wyt
* Frequencies of normal modes of oscillation:

_2 . km
wy = 2wq Sin N+ D

Many Coupled Oscillators

« Eigenvalues:

_5 . km
Wy = 4Wq SIN m

* Eigenvectors:

¢ Orthogonality:




Many Coupled Oscillators

* General solution:

N
k
x,(t) = Z ay sin( e )cos(wkt —6;)
k=1

N+1
* Attimet=0,

N
x,(0) = Z ay sin (%) cos(0y)

k=1
« Consider the expression:

ﬁ: Osi nk'n _ZN: o si nk'm\ . [ nkmn
% (0)sin{ v | = @y cos G sin | == Jsin |+

n=1 nk=1

N
—Nz 08,1, = 0
=5 2 @ €08 By 8y, = = @y €OS Oy
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Many Coupled Oscillators

* Likewise, consider the time derivatives:
N

. . [ nkm
X, () = —Z Ay sin | w7

k=1

. . . nkm
x,(0) = z a,wy sin Bk‘sm NT1

k=1"

) sin(wyt — 6y)

constants
N

) [ nk'm N )
Z %, (0) sin N+il=2 Ay, Wy SN G
n=
« If the initial velocities were all zero, then
0, =0fork=1,..,N

Continuous Systems

* What happens when the number of masses goes to
infinity, while the linear mass density remains constant?

T
mj, = 7 [Gne1 =) = O = Yn-1)]

m
— -
7 u
Yn+1=Vn N (6_y) n—¥Yn-1) N (a_J’)
£ 0x/ x+Ax £ 0x/ 5

d%y
=2 =T
Ko

<6y> (6)')
ax ~\ox
x+Ax x




The Wave Equation: -7
dx2  v? ot?

Continuous Systems

5., -6
62y_ 0x) py \0x),

Faez = ?
%y Tazy

Kotz = o2

*y ua’y

ox? T ot?

92 1 92
Yy Yy v= /T/H
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Solutions

When we had N masses, the solutions were
Vg (£) = Ap i cos(wyt — &)
— n labels the mass along the string
— With a continuous system, n is replaced by x.
Proposed solution to the wave equation for the

continuous string:
y(x,t) = f(x) coswt

Derivatives:
62
a—g = —w?f(x) cos wt
0%y 9%f
W = WCOS wt

Solutions

¢ Substitute into the wave equation:
0%y 10%
0x2  v2 ot2
0% f w?
FriRA

0*f w?
gxz T/ =0

* This is the same differential equation as for the

harmonic oscillator.
* Solutions are f(x) = A sin(wx/v) + B cos(wx/v)




Solutions

f(x) = Asin(wx/v) + B cos(wx/v)
* Boundary conditions at the ends of the string:

fO=fL)=0
f(x) = Asin(wx/v) where wL/v = nn
oy =TV
L

* Solutions can be written:
. mmx
Yn(x) = sin (—)
L
* Normal modes of oscillation:

nmwx
qn(x,t) = sin (T) cos wyt
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Properties of the Solutions

nmx
qn(x,t) = sin (T) cos wyt

n

§/7 \ third 2L Sv wn L
_nw
fourth é 2?‘ fn - 2L

Fourier Analysis

 In this case we define the “dot product” as an integral:
L . nnx
f = J; f(x)sin (T)dx
* Are y,(x) orthogonal?

L nmx mmx
Vo' Y, =fsin—sin—dx
noJm 0 (L ) ( L )
1J‘L ((n—m)n’x)
=—-| cos| ——————|dx
2 0 L — = 0 when

1fL (n+m)mx nEm
—=| cos|——————]dx
2), L




Fourier Analysis

¢ Butwhenn =m,
L nmx mmx
yy—fsin sin (—— ) dx
o= [ sin ()i (2
f (n m)nx e f 2Nt
=2), L

L
Yn'szz&nm

0

* So we can write
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Initial Value Problem

f(x)=Zan sin (mz_x)
Yo' f = ff(x)sm )dx
=L [;amsin - ]sin(nl‘ﬂ)dx
=ZamYm'Yn=§;am 6mn=%an

m

Initial Value Problem

fl) = Z a, sin (nLﬂ)

f f(x) sm ) dx

Now we know how to calculate a,, from the
initial conditions... we have solved the initial
value problem.




Initial Value Problem

* The functions y, (x) = sin (%) are like the
eigenvectors
* They are orthogonal in the sense that

L
L
f Y ()Y (x)dx = Esnm
0

* An arbitrary function f(x) which satisfies
£(0) = f(L) = 0 can be written:

. mmx
fx) = Z ay sin (T)
n=1
* How do we determine the coefficients a;?
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Initial Value Problem
* Multiply f(x) by ¥, (x) and integrate:
L L&
|| reomeoar= [ mz G (Y (D)

= i am < fo Lym(x)yn(x)dx>

m=1

L
L L
= 2, an(30m) = 3on
m=1
¢ Therefore,

2 L
an =1 [ FGmGIix
0

Example

* How to describe a square wave in terms of normal
modes:
u(x) = {+1 when 0 <x <L/2
—1whenlL/2<x<L

an =%fOL/zsin(nLLx)dx—%ﬁLsin(mZ—x)dx
2

= % [1 = cos(nm)]

_ 4 _ 4
y A3 = 52—, A5 = —, ***

a =
1 3 57

EU R




Example

™~ Y 2
| i a, = - [1 = cos(nm)]
./ s
sl Ao S S
I A ! _n'a3_37r' aS_ST['
a, =0,a4, =0,a6 =0,
loadd bacad

The initial shape doesn’t really satisfy the
boundary conditions y(0) = y(L) = 0, but

L ﬂ‘ the approximation does.
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Other Examples

« Consider an initial displacement in the middle of the
string:
0 whenx < 2L/5
f(x) =<1 when 2L/5 <x < 3L/5
0 when x > 3L/5

Let’s assume

‘ L=1and
v=1
Example
2 (35 nmx
O =7 sin (T) dx
2L/5
2 nrx
a[m ] = — Ff[x] sxn[ ]dlx
L Jo L
£[x_) = Plecewise[({0, x<2/5), {1, x > 2/5 && x< 3/5}, {0, x> 3/5}}]
Tabla(a(n], {n, M}]
1445 1-4/5 4 1-+/5 144/5 144/8 1-4/5 4
o ) 0 0 0 0 [} 0
in " 'sx" " 1 " 9 STt 1am "1ax " aset
1-4/5 1045 1+4/5 1-4/5 ] 1-4/5 V5
.0 wi0; .0, .0, .0,
17 13 21 23 25 27 23

* Now we know the first 30 values for a,... we're done!
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Example

* |s this a good approximation?

Plot[z(x, 0], {x, 0, 1}, PlotRangs + (-1, 2]]

* A good description of sharp features require high
frequencies (large n).

Example

* The complete solution to the initial value problem is

nmx
y(x,t) = z a, sin (T) cos wyt

n

Wy, =— |—

L ju

* What does this look like as a function of time?

Example

-05F

10



Another Example

* Consider a function that is a bit smoother:

FGO) = 10 (-24x) x>fsex<l

2410 (f-%) x> jeex<
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Example

* The integrals for the Fourier coefficients are of the
form:
b . (nnx b . [(nmx
[ sin (—) dx or [ xsin (—) dx
a L a L
* These can be solved analytically, but it is a lot of
work... wle o) smfefem) | el )

Example

¢ The initial shape of the approximation with
N=30 is better than for the square pulse.

11



Example
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Final Example

¢ An even smoother function:

0 x< g
f)= 1 100 (-3 +x)° x> akx<y
[ ) True
Example

* The integrals for the Fourier coefficients are of the

form:

b . nnx
[ sin(==
a L

¢ These can be solved analytically, but it is a lot of

work...

dx or [”xsin (222 dx or [” x2 sin (2 dx
a L a L
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Example

* The initial shape of the approximation with

N=30 is even better than the triangular pulse...

Exact

Approximate with N=30
VN
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Example
20
15F
10
0.5
e 3 ;
0.2 0.4 06 08 1.0
-05F
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