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Review of Coupled Oscillators

• General observations:
– Forces depend on positions �� of multiple masses

– Coupled set of differential equations

�� 	��� = � ��, �
, … , ��
��� = 1

��
� ��, �
, … , ��

– In the problems we will consider, �(��, �
, … , ��) is a linear 
function of ��

��� + �	�� = 0
� − �
� �� = 0

– If this is true then

det � − �
� = 0
– The eigenvalues of the matrix � are �




Review of Coupled Oscillators

• In general, a system with � masses can have � distinct 
eigenvalues

� − ��
� �� = 0
• There are �	eigenvectors ��
• The eigenvectors are orthogonal:

�� ∙ �� = 0 when � ≠  
• If �� is an eigenvector, then so is !	�� for any real number 

!.

• The eigenvectors can be normalized so that

�� ∙ �� = 1
�� ∙ �� = "��



Review of Coupled Oscillators

• An arbitrary vector �� can be expressed as a 
linear combination of eigenvectors:

�� = #��� + #
�
 + ⋯+ #���

= %#���
�

�&�
• How do we solve for the coefficients #�?

�� ∙ �� = %#��� ∙ ��
�

�&�
= %#�"��

�

�&�
= #�



Two Coupled Oscillators

• The spring is stretched by 

the amount �� − �

• Restoring force on 

pendulum 1:

�� = −'(�� − �
)
• Restoring force on 

pendulum 2:

�
 = '(�� − �
)

ℓ

�
 ��

ℓ

���� + �)
ℓ �� + ' �� − �
 = 0

���
 + �)
ℓ �
 − ' �� − �
 = 0



Two Coupled Oscillators

��� + �* 
 + �+ 
 �� − �+ 
�
 = 0
��
 + �* 
 + �+ 
 �
 − �+ 
�� = 0

• Eigenvalues are

��
 = �*
�

 = �* 
 + 2 �+ 

• Eigenvectors are

�� = 1
2

1
1

�
 = 1
2

1
−1



Two Coupled Oscillators

• Normal modes of oscillation:

-�� . = �� cos ��.-�
 . = �
 cos �
.
• General solution:

�� . = 2	�� cos ��. + ! + 3	�
 cos �
. + 4
• Initial conditions: �� 0 = ��*, ��5 0 = 6�*�� ∙ ��* = 2 cos !

�
 ∙ ��* = 3 cos 4
�� ∙ 6�* = −2�� sin !
�
 ∙ 6�* = −3�
 sin 4



Many Coupled Oscillators

• Equation of motion for mass 9:

�	:�; = �; = <
ℓ :;=� − :; − :; − :;>�

:�; + 2 �* 
:; − �* 
 :;=� + :;>� = 0
�* 
 = <

�ℓ
• We can construction solutions of the form :?@ . = �@ cos�@.
• Frequencies of normal modes of oscillation:

�@ = 2�* sin 'A
2 � + 1

:;



Many Coupled Oscillators

• Eigenvalues:

�@ = 2�* sin 'A
2 � + 1

• Eigenvectors:

�@; = sin 9'A
� + 1

• Orthogonality:

�� ∙ �� = �
2 	"��



Many Coupled Oscillators

• General solution:

�; . = % #@ sin 9'A
� + 1

�

@&�
cos �@. − B@

• At time . = 0,

�; 0 = % #@ sin 9'A
� + 1

�

@&�
cos B@

• Consider the expression:

% �; 0
�

;&�
sin 9'′A

� + 1 = % #@ cos B@ sin 9'′A
� + 1 sin 9'A

� + 1
�

;,@&�

= �
2 % #@ cos B@

�

@&�
"@D@ = �

2 #@E cos B@D



Many Coupled Oscillators

• Likewise, consider the time derivatives:

�5; . = − % #@�@ sin 9'A
� + 1

�

@&�
sin �@. − B@

�5; 0 = % #@�@
�

@&�
sin B@ sin 9'A

� + 1

% �5;(0)
�

;&�
sin 9'′A

� + 1 = �
2 #@E�@D sin B@D

• If the initial velocities were all zero, then 

B@ = 0 for ' = 1,… ,�

constants



Continuous Systems

• What happens when the number of masses goes to 
infinity, while the linear mass density remains constant?

�	:�; = <
ℓ :;=� − :; − :; − :;>�

�
ℓ → G

HIJK>HI
ℓ → LH

LM M=∆M
HI>HIOK

ℓ → LH
LM M

GℓP
:
P.
 = < P:

P� M=∆M
− P:

P� M



Continuous Systems

G P
:
P.
 = <

P:
P� M=∆M

− P:
P� M

ℓ

G P
:
P.
 = < P
:

P�


P
:
P�
 = G

<
P
:
P.


P
:
P�
 = 1

6

P
:
P.
The Wave Equation: 6 = </G



Solutions

• When we had � masses, the solutions were

:;,@ . = 2;,@ cos �@. − "@
– 9 labels the mass along the string

– With a continuous system, 9 is replaced by �.

• Proposed solution to the wave equation for the 

continuous string:

: �, . = R(�) cos�.
• Derivatives:

P
:
P.
 = −�
R(�) cos�.

P
:
P�
 = P
R

P�
 cos�.



Solutions

• Substitute into the wave equation:

P
:
P�
 = 1

6

P
:
P.


P
R
P�
 = −�


6
 R(�)
P
R
P�
 + �


6
 R � = 0
• This is the same differential equation as for the 

harmonic oscillator.

• Solutions are R � = 2 sin ��/6 + 3 cos ��/6



Solutions

R � = 2 sin ��/6 + 3 cos ��/6
• Boundary conditions at the ends of the string: 

R 0 = R S = 0
R � = 2 sin ��/6 where �S 6⁄ = 9A

�; = 9A6
S

• Solutions can be written:

:; � = sin 9A�
S

• Normal modes of oscillation:

-; �, . = sin 9A�
S cos�;.



Properties of the Solutions

-; �, . = sin 9A�
S cos�;.

U; = 2S9
�; = 9A6S
R; = 962S



Fourier Analysis

• In this case we define the “dot product” as an integral:

R ∙ :; = V R(�) sin 9A�S W�X
*

• Are :; � orthogonal?

:; ∙ :Y = V sin 9A�S sin �A�S W�X
*= 1

2V cos 9 − � A�
S W�

X

*
− 1

2V cos 9 + � A�
S W�

X

*

= 0 when 

9 ≠ �



Fourier Analysis

• But when 9 = �,
:; ∙ :Y = V sin 9A�S sin �A�S W�X

*= 1
2V cos 9 − � A�

S W�
X

*
− 1

2V cos 29A�
S W�

X

*
= 1

2V W�
X

*
= S

2
• So we can write

:; ∙ :Y = S
2	";Y

0



Initial Value Problem

R � =%#;; sin 9A�S
:; ∙ R = V R �X

* sin 9A�S W�
= V %#YY sin �A�SX

* sin 9A�S W�
=%#YY 	:Y ∙ :; = S

2	%#Y
Y

	"Y; = S
2#;



Initial Value Problem

R � = %#;
;

sin 9A�
S

#; = 2
S V R(�)

X

*
sin 9A�

S W�
Now we know how to calculate #; from the 

initial conditions…  we have solved the initial 

value problem.



Initial Value Problem

• The functions :; � = sin ;ZMX are like the 

eigenvectors

• They are orthogonal in the sense that

V :; � :Y � W�X
* = S

2 ";Y
• An arbitrary function R(�) which satisfies                 R 0 = R S = 0 can be written:

R � = % #;
[

;&�
sin 9A�

S
• How do we determine the coefficients #@?



Initial Value Problem

• Multiply R(�) by :; � and integrate:

V R � :; � W� = 	V % #Y:Y � :; � W�[
Y&�

X
*

X
*

= % #Y V :Y � :; � W�X
*

[
Y&�
= % #Y S

2 "Y;
X

Y&�
= S

2#;

• Therefore,

#; = 2
S V R � :; � W�

X

*



Example

• How to describe a square wave in terms of normal 

modes: � � = \+1	when	0 < � < S/2
−1	when S 2⁄ < � < S

#; = 2
S V sin 9A�

S W�
X/


*
− 2

S V sin 9A�
S W�

X
X



= 2
9A 1 − cos 9A
#� = `

Z, #a = `
aZ, #b = `

bZ, ⋯



Example

#; = 29A 1 � cos 9A

#� �
`

Z
, #a = àZ, #b = b̀Z, ⋯#
 = 0, #` � 0, #c � 0,⋯

S

The initial shape doesn’t really satisfy the 

boundary conditions :�0� � :�S� � 0, but 

the approximation does.



Other Examples

• Consider an initial displacement in the middle of the 

string:

R � = d 0		when	� _ 2S/5
1		when		2S/5 _ � _ 3S/5

0		when		� g 3S/5

Let’s assume 

S � 1 and 

6 � 1



Example

#; = 2SV sin
9A�

S
W�

aX/b


X/b

• Now we know the first 30 values for  #;…  we’re done!



Example

• Is this a good approximation?

• A good description of sharp features require high 
frequencies (large 9).



Example

• The complete solution to the initial value problem is

: �, . =%#;; sin 9A�S cos�;.
�; = 9AS <G

• What does this look like as a function of time?



Example



Another Example

• Consider a function that is a bit smoother:

R � =



Example

• The integrals for the Fourier coefficients are of the 

form:

h sin
;ZM

X
W�

i

j
or h � sin

;ZM

X
W�

i

j

• These can be solved analytically, but it is a lot of 

work…



Example

• The initial shape of the approximation with 

N=30 is better than for the square pulse.



Example



Final Example

• An even smoother function:

R � =



Example

• The integrals for the Fourier coefficients are of the 

form:

h sin
;ZM

X
W�

i

j
or h � sin

;ZM

X
W�

i

j
or h �
 sin

;ZM

X
W�

i

j

• These can be solved analytically, but it is a lot of 

work…



Example

• The initial shape of the approximation with 

N=30 is even better than the triangular pulse…

Exact
Approximate with N=30



Example


