

Physics 42200

Waves & Oscillations

Lecture 14 – French, Chapter 6

Spring 2016 Semester

Vibrations of Continuous Systems

• Equations of motion for masses in the middle:

$$\begin{split} m\,\ddot{x}_i + 2kx_i \, - k(x_{i-1} + x_{i+1}) &= 0 \\ \ddot{x}_i + 2(\omega_0)^2x_i - (\omega_0)^2(x_{i-1} + x_{i+1}) &= 0 \end{split}$$

Proposed solution:

$$\frac{x_i(t) = A_i \cos \omega t}{A_{i-1} + A_{i+1}} = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

• We solved this to determine A_i and ω_i ...

Vibrations of Continuous Systems

 $\bullet \ \ \mathsf{Amplitude} \ \mathsf{of} \ \mathsf{mass} \ n \ \mathsf{for} \ \mathsf{normal} \ \mathsf{mode} \ k \colon$

$$A_{n,k} = C \sin\left(\frac{nk\pi}{N+1}\right)$$

• Frequency of normal mode k:

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

• Solution for normal modes:

$$q_{n,k}(t) = A_{n,k}\cos\omega_k t$$

General solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \theta_k)$$

Another Example

• Discrete masses on an elastic string with tension T:

• Consider transverse displacements:

• Vertical force on one mass:

Another Example

• Equation of motion for mass n:

quation of motion for mass
$$n$$
:
$$m \, \ddot{y}_n = F_n = \frac{T}{\ell} \left[(y_{n+1} - y_n) - (y_n - y_{n-1}) \right]$$

$$\ddot{y}_n + 2(\omega_0)^2 y_n - (\omega_0)^2 (y_{n+1} + y_{n-1}) = 0$$

$$(\omega_0)^2 = \frac{T}{m\ell}$$

Normal modes:

$$y_{n,k}(t) = A_{n,k}\cos(\omega_k t - \theta_k)$$

Example

• Solutions are of the form

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \theta_k)$$

- The constants a_k and θ_k must be chosen to satisfy the initial conditions.
- Consider, for example, an initial state where all masses are in their equilibrium position except for the mass at x_1 which is initially displaced by a distance $A\dots$

Example

Consider, for example, an initial state where all masses are in their equilibrium position except for the mass at x_1 which is initially displaced by a distance $A\ldots$

$$x_1(0) = \sum_{\substack{k=1\\N}}^{N} a_k \sin\left(\frac{k\pi}{N+1}\right) \cos\theta_k = A$$

$$x_2(0) = \sum_{k=1}^{N-1} a_k \sin\left(\frac{2k\pi}{N+1}\right) \cos\theta_k = 0$$

$$x_N(0) = \sum_{k=1}^{N} a_k \sin\left(\frac{Nk\pi}{N+1}\right) \cos\theta_k = 0$$

$$\dot{x}_n(0) = 0$$

Example

- We have 2N equations
 - initial positions of N masses
 - initial velocities of N masses
- We have 2N unknowns: a_k and θ_k
- · How do we solve this linear system of equations?
- Properties of the normal modes:
 - Eigenvalues: $\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$
 - Eigenvectors: $A_{n,k} = \sin\left(\frac{nk\pi}{N+1}\right)$
- Eigenvectors are orthogonal:

$$\sum_{k=1}^{N} A_{n,k} A_{m,k} = 0 \text{ when } n \neq m$$

Discrete Sine Transform

• The eigenvectors are orthogonal so it must be true

$$\sum_{k=1}^{N} \sin\left(\frac{nk\pi}{N+1}\right) \sin\left(\frac{mk\pi}{N+1}\right) = 0$$

• When
$$n = m$$
 we just have
$$\sum_{k=1}^{N} \sin^2\left(\frac{nk\pi}{N+1}\right) = \sum_{k=1}^{N} \frac{1}{2} \left(1 + \cos\left(\frac{2nk\pi}{N+1}\right)\right) = \frac{N}{2}$$

Discrete Sine Transform

• We can summarize this in a useful form:

$$\sum_{k=1}^{N} \sin\left(\frac{nk\pi}{N+1}\right) \sin\left(\frac{mk\pi}{N+1}\right) = \frac{N}{2} \ \delta_{nm}$$

• The symbol δ_{nm} is called the Kronecker Delta: $\delta_{nm}= \begin{cases} 0 & \text{when } n\neq m \\ 1 & \text{when } n=m \end{cases}$

$$\delta_{nm} = \begin{cases} 0 & \text{when } n \neq m \\ 1 & \text{when } n = m \end{cases}$$

• How will this help us solve for the constants of integration, given the initial conditions?

Example

· General solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \theta_k)$$

• At time t=0,

$$x_n(0) = \sum_{k=0}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\theta_k)$$

$$\begin{aligned} & \bullet \quad \text{At time } t = 0, \\ & x_n(0) = \sum_{k=1}^N a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\theta_k) \\ & \bullet \quad \text{Consider the expression:} \\ & \sum_{n=1}^N x_n(0) \sin\left(\frac{nk'\pi}{N+1}\right) = \sum_{n,k=1}^N a_k \cos\theta_k \sin\left(\frac{nk'\pi}{N+1}\right) \sin\left(\frac{nk\pi}{N+1}\right) \\ & = \frac{N}{2} \sum_{k=1}^N a_k \cos\theta_k \, \delta_{k'k} = \frac{N}{2} a_{k'} \cos\theta_{k'} \end{aligned}$$

Example

• Likewise, consider the time derivatives:

$$\dot{x}_n(t) = -\sum_{k=1}^N a_k \omega_k \sin\left(\frac{nk\pi}{N+1}\right) \sin(\omega_k t - \theta_k)$$

$$\dot{x}_n(0) = \sum_{k=1}^N a_k \omega_k \sin\theta_k \sin\left(\frac{nk\pi}{N+1}\right)$$
constants

$$\sum_{n=1}^{N} \dot{x}_n(0) \sin\left(\frac{nk'\pi}{N+1}\right) = \frac{N}{2} a_{k'} \omega_{k'} \sin \theta_{k'}$$

If the initial velocities were all zero, then

Example

• Now we know that θ_k are all zero...

$$\sum_{n=1}^{N} x_n(0) \sin\left(\frac{nk'\pi}{N+1}\right) = \frac{N}{2} a_{k'}$$

$$a_k = \frac{2}{N} \sum_{n=1}^{N} x_n(0) \sin\left(\frac{nk\pi}{N+1}\right)$$
• In this example, $x_1(0) = A$, $x_{n\neq 1}(0) = 0$

- Therefore,

$$a_k = \frac{2A}{N} \sin\left(\frac{k\pi}{N+1}\right)$$

A slightly different example...

• Instead of the mass at one end being initially displaced, suppose it was the mass in the middle. In this case,

$$a_k = \frac{2A}{N} \sin\left(\frac{(N/2)k\pi}{N+1}\right)$$

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t)$$

Example with N=20

Example with N=50

Review

- We calculated the eigenvalues for a system with ${\it N}$ identical masses

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

• We found the normal modes of vibration (eigenvectors):

$$A_{n,k} = \sin\left(\frac{nk\pi}{N+1}\right)$$

• The general form of the solution is

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \theta_k)$$

Review

• We determined the constants of integration from the initial conditions:

$$a_k \cos \theta_k = \frac{2}{N} \sum_{n=1}^{N} x_n(0) \sin \left(\frac{nk\pi}{N+1} \right)$$
$$a_k \sin \theta_k = \frac{2}{N\omega_k} \sum_{n=1}^{N} \dot{x}_n(0) \sin \left(\frac{nk\pi}{N+1} \right)$$

• Put these back into the general form of the solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \theta_k)$$

And we're done..

Masses on a String

First normal mode

Second normal mode

Continuous Systems

• What happens when the number of masses goes to infinity, while the linear mass density remains constant?

finity, while the linear mass density remains constant
$$m \ \ddot{y}_n = \frac{T}{\ell} \left[(y_{n+1} - y_n) - (y_n - y_{n-1}) \right] \\ \frac{m}{\ell} \to \mu \\ \frac{y_{n+1} - y_n}{\ell} \to \left(\frac{\partial y}{\partial x} \right)_{x + \Delta x} \quad \frac{(y_n - y_{n-1})}{\ell} \to \left(\frac{\partial y}{\partial x} \right)_x$$

$$\mu \ell \frac{\partial^2 y}{\partial t^2} = T \left[\left(\frac{\partial y}{\partial x} \right)_{x + \Delta x} - \left(\frac{\partial y}{\partial x} \right)_x \right]$$

Continuous Systems

$$\mu \frac{\partial^2 y}{\partial t^2} = T \frac{\left(\frac{\partial y}{\partial x}\right)_{x + \Delta x} - \left(\frac{\partial y}{\partial x}\right)_x}{\ell}$$

$$\mu \frac{\partial^2 y}{\partial t^2} = T \frac{\partial^2 y}{\partial x^2}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 y}{\partial t^2}$$

The Wave Equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

$$v=\sqrt{T/\mu}$$

Solutions

• When we had $\it N$ masses, the solutions were

$$y_{n,k}(t) = A_{n,k}\cos(\omega_k t - \delta_k)$$

- $-\ n$ labels the mass along the string
- With a continuous system, n is replaced by x.
- Proposed solution to the wave equation for the continuous string:

$$y(x,t) = f(x)\cos\omega t$$

• Derivatives:

$$\frac{\partial^2 y}{\partial t^2} = -\omega^2 f(x) \cos \omega t$$
$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} \cos \omega t$$

Solutions

• Substitute into the wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$
$$\frac{\partial^2 f}{\partial x^2} = -\frac{\omega^2}{v^2} f(x)$$
$$\frac{\partial^2 f}{\partial x^2} + \frac{\omega^2}{v^2} f(x) = 0$$

- This is the same differential equation as for the harmonic oscillator.
- Solutions are $f(x) = A \sin(\omega x/v) + B \cos(\omega x/v)$

Solutions

$$f(x) = A\sin(\omega x/v) + B\cos(\omega x/v)$$

• Boundary conditions at the ends of the string:

$$f(0) = f(L) = 0$$

 $f(x) = A \sin(\omega x/v)$ where $\omega L/v = n\pi$

• Solutions can be written:

$$f_n(x) = A_n \sin\left(\frac{n\pi x}{L}\right)$$

• Complete solution describing the motion of the whole string:

$$y_n(x,t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos \omega_n t$$

Properties of the Solutions

$$y_n(x,t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos \omega_n t$$

$$\frac{v}{2L}$$

$$\lambda_n = \frac{2L}{n}$$

$$\omega_n = \frac{n\pi v}{L}$$

third
$$\frac{2L}{3}$$
 $\frac{3v}{2L}$

$$f_n = \frac{nv}{2L}$$

Forced Oscillations

• One end of the string is fixed, the other end is forced with the function $Y(t)=B\cos\omega t$.

$$y(0,t) = B\cos\omega t$$
$$y(L,t) = 0$$

 The wave equation still holds so we expect solutions to be of the form

$$y(x,t) = f(x)\cos\omega t$$

Forced Oscillations

- This time we can't constrain f(x) to be zero at both ends.
- Now, let $f(x) = A \sin(kx + \alpha)$
 - The constant k is just ω/v . - We need to solve for A and α
- Boundary condition at x = L:

$$\sin\left(\frac{\omega L}{v} + \alpha\right) = 0 \implies \frac{\omega L}{v} + \alpha = p\pi$$

$$\alpha_p = p\pi - \frac{\omega L}{v}$$

• Condition at x = 0:

$$B = A_p \sin \alpha_p$$

Forced Oscillations

• Amplitude of oscillations:

$$A_p = \frac{B}{\sin(p\pi - \omega L/v)}$$

- What does this mean?
 - The driving force can excite many normal modes of oscillation
 - When $\omega=p\pi v/L$, the amplitude gets very large

#