

# Physics 42200 Waves & Oscillations

Lecture 13 – French, Chapter 5

Spring 2016 Semester

#### **One Mass**

Consider one mass with two springs:



#### **Two Masses**

Consider two masses with three springs:



$$F_1 = -kx_1 - kx_1 + kx_2 = k(x_2 - 2x_1)$$
  

$$F_2 = kx_1 - kx_2 - kx_2 = k(x_1 - 2x_2)$$

#### **Three Masses**

Consider three masses with four springs:



$$F_1 = -kx_1 - kx_1 + kx_2 = k(x_2 - 2x_1)$$

$$F_2 = -k(x_2 - x_1) - k(x_2 - x_3) = k(x_1 - 2x_2 + x_3)$$

$$F_3 = -kx_3 - kx_3 + kx_2 = k(x_2 - 2x_3)$$

#### **Four Masses**



$$\begin{split} F_1 &= -kx_1 - kx_1 + kx_2 = k(x_2 - 2x_1) \\ F_2 &= -k(x_2 - x_1) - k(x_2 - x_3) = k(x_1 - 2x_2 + x_3) \\ F_3 &= -k(x_3 - x_2) - k(x_3 - x_4) = k(x_2 - 2x_3 + x_4) \\ F_4 &= -kx_4 - kx_4 + kx_3 = k(x_3 - 2x_4) \end{split}$$

- This pattern repeats for more and more masses.
- Except at the ends,

$$F_i = -k(x_i - x_{i-1}) - k(x_i - x_{i+1}) = k(x_{i-1} - 2x_i + x_{i+1})$$

· Equations of motion:

$$m \ddot{x}_i - k(x_{i-1} - 2x_i + x_{i+1}) = 0$$

# **Many Coupled Oscillators**

$$m \ddot{x}_i - k(x_{i-1} - 2x_i + x_{i+1}) = 0$$
  
$$\ddot{x}_i + 2(\omega_0)^2 x_i - (\omega_0)^2 (x_{i-1} + x_{i+1}) = 0$$

- Apply the same techniques we used before:
  - $-\operatorname{Suppose} x_i(t) = A_i \cos \omega t$
  - Then  $\ddot{x}_i(t) = -\omega^2 A_i \cos \omega t$

$$(-\omega^2 + 2(\omega_0)^2)A_i - (\omega_0)^2(A_{i-1} + A_{i+1}) = 0$$

$$\frac{A_{i-1} + A_{i+1}}{A_i} = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

• Guess at a solution:

$$A_n = C\sin(n\Delta\theta)$$

• Will this work?

# **Many Coupled Oscillators**

$$\frac{A_{n-1} + A_{n+1}}{A_n} = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

Proposed solution:

$$A_n = C \sin(n\Delta\theta)$$

- Boundary conditions:  $A_0 = A_{N+1} = 0$  This implies that  $(N+1)\Delta\theta = k\pi$

implies that 
$$(N+1)\Delta\theta = k\pi$$

$$A_n = C \sin\left(\frac{nk\pi}{N+1}\right)$$

$$A_{n-1} + A_{n+1} = C \sin\left(\frac{(n-1)k\pi}{N+1}\right) + C \sin\left(\frac{(n+1)k\pi}{N+1}\right)$$

$$= 2C \sin\left(\frac{nk\pi}{N+1}\right) \cos\left(\frac{k\pi}{N+1}\right)$$

$$\frac{A_{n-1} + A_{n+1}}{A_n} = 2 \cos\left(\frac{k\pi}{N+1}\right) = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

### **Many Coupled Oscillators**

$$\frac{A_{n-1} + A_{n+1}}{A_n} = 2\cos\left(\frac{k\pi}{N+1}\right) = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

• Solve for  $\omega$ :

$$\omega^{2} = 2(\omega_{0})^{2} \left( 1 - \cos\left(\frac{k\pi}{N+1}\right) \right)$$

$$= 4(\omega_{0})^{2} \sin^{2}\left(\frac{k\pi}{2(N+1)}\right)$$

$$\omega_{k} = 2\omega_{0} \sin\left(\frac{k\pi}{2(N+1)}\right)$$

• There are  ${\it N}$  possible frequencies of oscillation.

# **Many Coupled Oscillators**

• The motion of the masses depends on both the position of the mass (n) and the mode number (k):

$$A_{n,k} = C_n \sin\left(\frac{nk\pi}{N+1}\right)$$

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

ullet When all the particles oscillate in the  $k^{
m th}$  normal mode, the  $n^{\text{th}}$  particle's position is:

$$x_{n,k}(t) = A_{n,k}\cos(\omega_k t + \delta_k)$$

# **Many Coupled Oscillators**

What do these modes look like?

- Lowest order mode has 
$$k=1...$$
 
$$x_{n,1}(t)=\mathcal{C}_1\sin\left(\frac{n\pi}{N+1}\right)\cos\omega_1 t$$



# **Many Coupled Oscillators**

• Positions of masses in the second mode:



• Positions for 4 particles in modes k = 1,2,3,4:



# **Vibrations of Continuous Systems**

• Amplitude of mass n for normal mode k:

$$A_{n,k} = C \sin\left(\frac{nk\pi}{N+1}\right)$$

• Frequency of normal mode k:

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

 $x_n(t) = A_{n,k}\cos\omega_k t$  • General solution: • Solution for normal modes:

$$x_n(t) = A_{n,k} \cos \omega_k t$$

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \delta_k)$$

#### **Another Example**

• Discrete masses on an elastic string with tension T:



• Consider transverse displacements:



• Vertical force on one mass:



# **Another Example**



• Equation of motion for mass n:

quation of motion for mass 
$$n$$
: 
$$m \ \ddot{y}_n = F_n = \frac{T}{\ell} [(y_{n+1} - y_n) - (y_n - y_{n-1})]$$
 
$$\ddot{y}_n + 2(\omega_0)^2 y_n - (\omega_0)^2 (y_{n+1} + y_{n-1}) = 0$$
 
$$(\omega_0)^2 = \frac{T}{m\ell}$$

• Normal modes:

$$y_{n,k}(t) = A_{n,k}\cos(\omega_k t - \delta_k)$$

# Masses on a String



First normal mode

Second normal mode

#### **Continuous Systems**

• What happens when the number of masses goes to infinity, while the linear mass density remains constant?

finity, while the linear mass density remains consta 
$$m \ \ddot{y}_n = \frac{T}{\ell} \left[ (y_{n+1} - y_n) - (y_n - y_{n-1}) \right] \\ \frac{m}{\ell} \to \mu \\ \frac{y_{n+1} - y_n}{\ell} \to \left( \frac{\partial y}{\partial x} \right)_{x + \Delta x} \quad \frac{(y_n - y_{n-1})}{\ell} \to \left( \frac{\partial y}{\partial x} \right)_x$$

$$\mu \ell \frac{\partial^2 y}{\partial t^2} = T \left[ \left( \frac{\partial y}{\partial x} \right)_{x + \Delta x} - \left( \frac{\partial y}{\partial x} \right)_x \right]$$

#### **Continuous Systems**

$$\mu \frac{\partial^2 y}{\partial t^2} = T \frac{\left(\frac{\partial y}{\partial x}\right)_{x + \Delta x} - \left(\frac{\partial y}{\partial x}\right)_{x}}{\ell}$$

$$\mu \frac{\partial^2 y}{\partial t^2} = T \frac{\partial^2 y}{\partial x^2}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 y}{\partial t^2}$$

The Wave Equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

$$v = \sqrt{T/\mu}$$

#### **Solutions**

- When we had N masses, the solutions were  $y_{n,k}(t) = A_{n,k}\cos(\omega_k t \delta_k)$ 
  - n labels the mass along the string
  - With a continuous system, n is replaced by x.
- Proposed solution to the wave equation for the continuous string:

$$y(x,t) = f(x)\cos\omega t$$

• Derivatives:

$$\frac{\partial^2 y}{\partial t^2} = -\omega^2 f(x) \cos \omega t$$
$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} \cos \omega t$$

#### **Solutions**

• Substitute into the wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$
$$\frac{\partial^2 f}{\partial x^2} = -\frac{\omega^2}{v^2} f(x)$$
$$\frac{\partial^2 f}{\partial x^2} + \frac{\omega^2}{v^2} f(x) = 0$$

- This is the same differential equation as for the harmonic oscillator.
- Solutions are  $f(x) = A \sin(\omega x/v) + B \cos(\omega x/v)$

#### **Solutions**

 $f(x) = A\sin(\omega x/v) + B\cos(\omega x/v)$ 

• Boundary conditions at the ends of the string:

$$f(0) = f(L) = 0$$

$$f(x) = A \sin(\omega x/v)$$
 where  $\omega L/v = n\pi$ 

• Solutions can be written:

$$f_n(x) = A_n \sin\left(\frac{n\pi x}{L}\right)$$

• Complete solution describing the motion of the whole string:

$$y_n(x,t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos \omega_n t$$

# **Properties of the Solutions**

$$y_n(x,t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos \omega_n t$$



mode wavelength from 2L

$$\lambda_n = \frac{2L}{n}$$



second L  $\frac{v}{L}$ 

$$\omega_n = \frac{n\pi v}{I}$$



fourt

 $\frac{L}{2}$ 

 $f_n = \frac{n\imath}{2I}$