

Physics 42200 Waves & Oscillations

Lecture 12 – French, Chapter 5

Spring 2016 Semester

Matthew Jones

The Eigenvalue Problem

• If ${\bf A}$ is an $n \times n$ matrix and $\overrightarrow{{m u}}$ is a vector, find the numbers λ that satisfy

$$A \overrightarrow{u} = \lambda \overrightarrow{u}$$

Re-write the equation this way:

$$(A - \lambda I) \vec{u} = 0$$

This is true only if

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

• For a 2×2 matrix, this is:

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = (a - \lambda)(d - \lambda) - bc = 0$$

• This is a second order polynomial in λ . Use the quadratic formula to find the roots.

The Eigenvalue Problem

• The eigenvectors are vectors $\overrightarrow{m{u}}_i$ such that

$$(\boldsymbol{A} - \lambda_i \boldsymbol{I}) \overrightarrow{\boldsymbol{u}}_i = 0$$

- There are n eigenvalues and n eigenvectors
- If $\overrightarrow{\boldsymbol{u}}_i$ is an eigenvector, then $\alpha \overrightarrow{\boldsymbol{u}}_i$ is also an eigenvector.
- Sometimes it is convenient to choose the eigenvectors so that they have unit length:

$$\widehat{\boldsymbol{u}}_i \cdot \widehat{\boldsymbol{u}}_i = 1$$

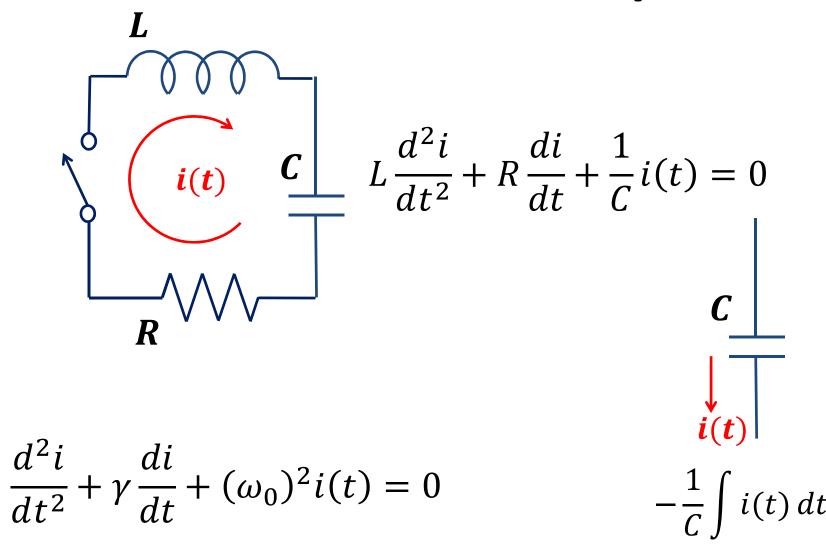
Eigenvectors are orthogonal:

$$\vec{\boldsymbol{u}}_i \cdot \vec{\boldsymbol{u}}_j = 0$$
 when $i \neq j$

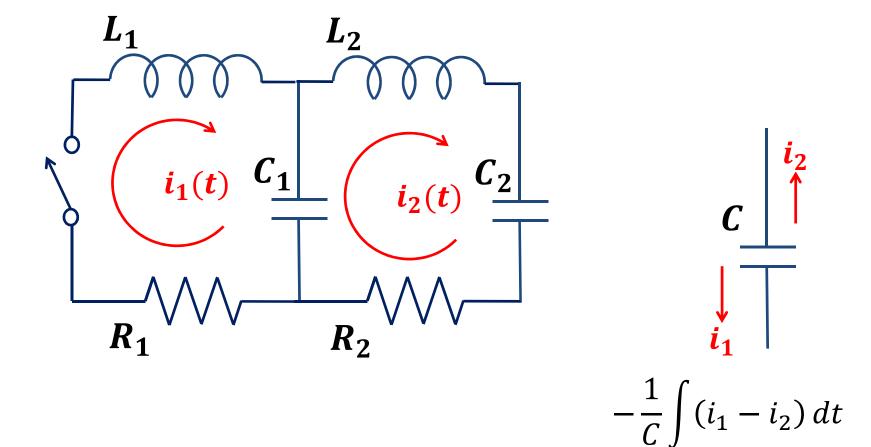
• An arbitrary vector \vec{v} can be written as a linear combination of the eigenvectors:

$$\vec{\boldsymbol{v}} = a_1 \hat{\boldsymbol{u}}_1 + a_2 \hat{\boldsymbol{u}}_2 + \cdots$$

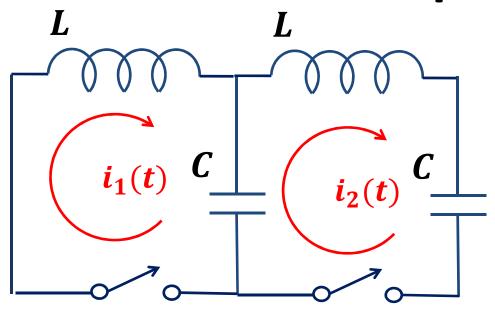
A Circuit with One Loop



A Circuit with Two Loops



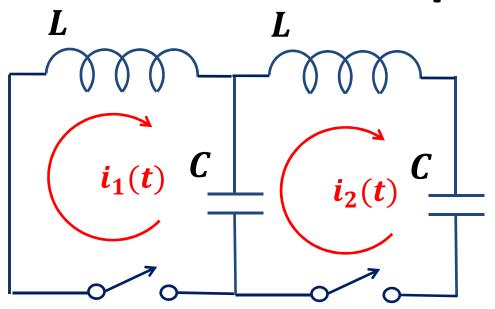
Example



$$-L\frac{di_{1}}{dt} - \frac{1}{C} \int (i_{1} - i_{2})dt = 0$$

$$-L\frac{di_{2}}{dt} - \frac{1}{C} \int i_{2}dt - \frac{1}{C} \int (i_{2} - i_{1})dt = 0$$

Example



$$\frac{d^2 i_1}{dt^2} + (\omega_0)^2 (i_1 - i_2) = 0$$

$$\frac{d^2 i_2}{dt^2} + (\omega_0)^2 (2i_2 - i_1) = 0$$

Normal Modes of Oscillation

 What are the frequencies of the normal modes of oscillation?

- Let
$$\vec{i}(t) = \vec{i} \cos \omega t$$

- Then
$$\frac{d^2\vec{\iota}}{dt^2} = -\omega^2\vec{\iota}(t)$$

Substitute into the pair of differential equations:

$$(-\omega^2 + (\omega_0)^2)i_1 - (\omega_0)^2 i_2 = 0$$

$$(-\omega^2 + 2(\omega_0)^2)i_2 - (\omega_0)^2 i_1 = 0$$

Write it as a matrix:

$$\begin{pmatrix} (\omega_0)^2 - \omega^2 & -(\omega_0)^2 \\ -(\omega_0)^2 & 2(\omega_0)^2 - \omega^2 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = 0$$

$$\begin{pmatrix} (\omega_0)^2 - \omega^2 & -(\omega_0)^2 \\ -(\omega_0)^2 & 2(\omega_0)^2 - \omega^2 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = 0$$

• For simplicity, let $\lambda = \omega^2$ and calculate the determinant:

$$\begin{vmatrix} (\omega_0)^2 - \lambda & -(\omega_0)^2 \\ -(\omega_0)^2 & 2(\omega_0)^2 - \lambda \end{vmatrix} = (\lambda - (\omega_0)^2)(\lambda - 2(\omega_0)^2) - (\omega_0)^4$$
$$= \lambda^2 - 3\lambda(\omega_0)^2 + (\omega_0)^4 = 0$$

Roots of the polynomial:

$$\lambda = \frac{3}{2} (\omega_0)^2 \pm \frac{1}{2} \sqrt{9(\omega_0)^4 - 4(\omega_0)^4}$$
$$\omega^2 = (\omega_0)^2 \left(\frac{3 \pm \sqrt{5}}{2}\right)$$

The eigenvectors are obtained by substituting in each eigenvalue.

$$- \text{ When } \omega^2 = (\omega_0)^2 \left(\frac{3+\sqrt{5}}{2}\right)$$

$$\frac{(\omega_0)^2}{2} \left(-1-\sqrt{5}\right) -2 -2 -1 - \sqrt{5} \left(i_1\atop i_2\right) = 0$$

$$i_1 = \left(\frac{1-\sqrt{5}}{2}\right) i_2$$

— First normal mode of oscillation:

$$\vec{q}_1 = \mathbf{A} \begin{pmatrix} 1 - \sqrt{5} \\ 2 \end{pmatrix} \cos(\omega_1 t + \boldsymbol{\alpha})$$

The eigenvectors are obtained by substituting in each eigenvalue.

$$- \text{ When } \omega^2 = (\omega_0)^2 \left(\frac{3-\sqrt{5}}{2}\right)$$

$$\frac{(\omega_0)^2}{2} \left(-1+\sqrt{5}\right) -2 -2 + \sqrt{5} \cdot \left(i_1\right) = 0$$

$$i_1 = \left(\frac{1+\sqrt{5}}{2}\right) i_2$$

— Second normal mode of oscillation:

$$\vec{q}_2 = \mathbf{B} \begin{pmatrix} 1 + \sqrt{5} \\ 2 \end{pmatrix} \cos(\omega_2 t + \mathbf{\beta})$$

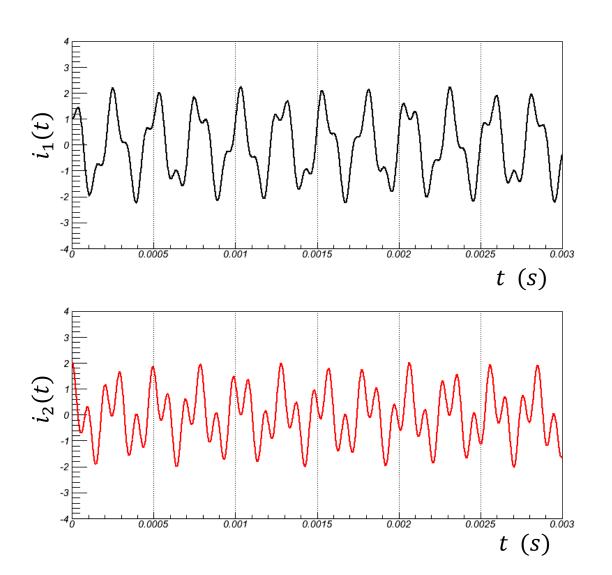
 The original "coordinates" are the sum of the normal modes of oscillation:

$$i_1(t) = A(1 - \sqrt{5})\cos(\omega_1 t + \alpha) + B(1 + \sqrt{5})\cos(\omega_2 t + \beta)$$
$$i_2(t) = 2A\cos(\omega_1 t + \alpha) + 2B\cos(\omega_2 t + \beta)$$

- The constants of integration can be chosen to satisfy the initial conditions
 - For example, suppose that $i_1(0) = i_0$ and $i_2(0) = 0$

- Then
$$A = -B$$
, $2A = i_0$ → $A = \frac{i_0}{2}$, $B = -\frac{i_0}{2}$

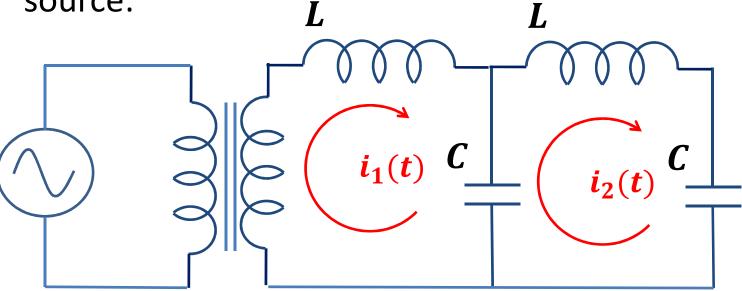
Two Loop Circuit



$$f_0 = \frac{\omega_0}{2\pi} = 1 \text{ kHz}$$
$$i_0 = 1 \text{ A}$$

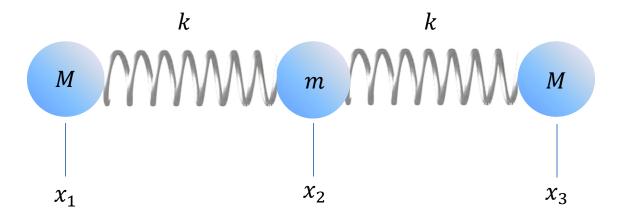
Forced Coupled Circuit

If the two loops were driven with a sinusoidal voltage source:



• Resonance would occur at the frequency of each normal mode: $(3 + \sqrt{5})$

$$\omega^2 = (\omega_0)^2 \left(\frac{3 \pm \sqrt{5}}{2} \right)$$



Forces on each mass:

$$F_1 = -k(x_1 - x_2)$$

$$F_2 = k(x_1 - x_2) - k(x_2 - x_3) = kx_1 - 2kx_2 + kx_3$$

$$F_3 = -k(x_3 - x_2)$$

• Equations of motion:

$$F_1 = M\ddot{x}_1 = -k(x_1 - x_2)$$

$$F_2 = m\ddot{x}_2 = kx_1 - 2kx_2 + kx_3$$

$$F_3 = M\ddot{x}_3 = -k(x_3 - x_2)$$

- Let $\omega_0^2 = \frac{k}{M}$ and ${\omega_0'}^2 = \frac{k}{m}$
- Then,

$$\ddot{x}_1 + \omega_0^2 x_1 - \omega_0^2 x_2 = 0$$

$$\ddot{x}_2 - {\omega_0'}^2 x_1 + 2{\omega_0'}^2 x_2 - {\omega_0'}^2 x_3 = 0$$

$$\ddot{x}_3 - {\omega_0}^2 x_2 + {\omega_0}^2 x_3 = 0$$

Write this as a matrix...

Assume that solutions are of the form

$$x_i(t) = A_i \cos(\omega t + \varphi)$$

• Then $\ddot{x}_i = -\omega^2 x_i$ and

$$\begin{pmatrix} -\omega^{2} + \omega_{0}^{2} & -\omega_{0}^{2} & 0 \\ -\omega_{0}^{\prime 2} & -\omega^{2} + 2\omega_{0}^{\prime 2} & -\omega_{0}^{\prime 2} \\ 0 & -\omega_{0}^{2} & -\omega^{2} + \omega_{0}^{2} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0$$

• Let $\lambda = \omega^2$. Then this will be true if

$$\begin{vmatrix} \lambda - \omega_0^2 & \omega_0^2 & 0 \\ {\omega_0'}^2 & \lambda - 2{\omega_0'}^2 & {\omega_0'}^2 \\ 0 & \omega_0^2 & \lambda - \omega_0^2 \end{vmatrix} = 0$$

Expand the determinant:

$$\begin{vmatrix} \lambda - \omega_0^2 & \omega_0^2 & 0 \\ {\omega_0'}^2 & \lambda - 2{\omega_0'}^2 & {\omega_0'}^2 \\ 0 & \omega_0^2 & \lambda - \omega_0^2 \end{vmatrix}$$

$$= (\lambda - \omega_0^2) [(\lambda - 2{\omega_0'}^2)(\lambda - \omega_0^2) - {\omega_0'}^2 {\omega_0^2}]$$

$$- {\omega_0^2 {\omega_0'}^2}(\lambda - {\omega_0^2})$$

$$= (\lambda - {\omega_0^2}) [(\lambda - 2{\omega_0'}^2)(\lambda - {\omega_0^2}) - 2{\omega_0'}^2 {\omega_0^2}]$$

$$= \lambda(\lambda - {\omega_0^2})(\lambda - {\omega_0^2} - 2{\omega_0'}^2)$$

$$\lambda(\lambda - \omega_0^2)(\lambda - \omega_0^2 - 2\omega_0'^2) = 0$$

The roots are

$$\lambda = \omega^2 = 0$$

$$\lambda = \omega^2 = \omega_0^2$$

$$\lambda = \omega^2 = \omega_0^2 + 2\omega_0'^2$$

- What motion does this correspond to?
- Calculate the eigenvectors...

• When $\lambda = 0$:

$$\begin{pmatrix} \omega_0^2 & -\omega_0^2 & 0 \\ -\omega_0'^2 & 2\omega_0'^2 & -\omega_0'^2 \\ 0 & -\omega_0^2 & \omega_0^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

This tells us that

$$x_2 = x_1$$
$$x_3 = x_2$$

- All masses move in the same direction at once.
- This is just a translation of the entire system.

• When $\lambda = \omega_0^2$

$$\begin{pmatrix} 0 & -\omega_0^2 & 0 \\ -\omega_0'^2 & 2\omega_0'^2 - \omega_0^2 & -\omega_0'^2 \\ 0 & -\omega_0^2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

This tells us that

$$x_2 = 0$$
$$x_1 = -x_3$$

Motion is described by

$$x_1(t) = A\cos(\omega_0 t + \varphi)$$

$$x_2(t) = 0$$

$$x_3(t) = -A\cos(\omega_0 t + \varphi)$$

• When $\lambda = \omega_0^2 + 2{\omega'_0}^2$ $\begin{pmatrix} -2{\omega'_0}^2 & -{\omega_0}^2 & 0\\ -{\omega'_0}^2 & {\omega_0}^2 & -{\omega'_0}^2 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = 0$ $0 \quad -{\omega_0}^2 \quad -2{\omega'_0}^2$

This tells us that

$$2\omega_0'^2 x_1 = -\omega_0^2 x_2$$
$$\omega_0^2 x_2 = -2\omega_0'^2 x_2$$

Which means that

$$x_1 = x_3 x_2 = -\frac{2\omega_0'^2}{\omega_0^2} x_1$$