

Physics 42200 Waves & Oscillations

Lecture 34 – Interference

Spring 2015 Semester

Matthew Jones

• Electric field:

$$\vec{E}(\vec{x},t) = \vec{E}_0 \cos(\vec{k} \cdot \vec{x} - \omega t)$$

• Light intensity:

$$I = c\epsilon \left\langle \left| \vec{E} \right|^2 \right\rangle_T$$

Two electric fields:

$$\vec{E}_{1}(\vec{x},t) = \vec{E}_{10}\cos(\vec{k}\cdot\vec{x} - \omega t + \xi_{1})$$

$$\vec{E}_{2}(\vec{x},t) = \vec{E}_{20}\cos(\vec{k}\cdot\vec{x} - \omega t + \xi_{2})$$

• Light intensity:

$$I = v\epsilon \langle |\vec{E}_1 + \vec{E}_2|^2 \rangle_T$$

$$I = v \epsilon \langle |\vec{E}_1 + \vec{E}_2|^2 \rangle_T$$

$$I = v\epsilon \left\langle \left| \vec{E}_1 \right|^2 \right\rangle_T + v\epsilon \left\langle \left| \vec{E}_2 \right|^2 \right\rangle_T + 2v\epsilon \left\langle \vec{E}_1 \cdot \vec{E}_2 \right\rangle_T$$
$$= I_1 + I_2 + I_{12}$$
$$I_{12} = v\epsilon \vec{E}_{01} \cdot \vec{E}_{02} \cos \delta$$

Phase difference: $\delta = \vec{k}_1 \cdot \vec{x} - \vec{k}_2 \cdot \vec{x} + \xi_1 - \xi_2$

- Why didn't we care about I_{12} when discussing geometric optics?
 - Incoherent light: $\langle I_{12} \rangle = 0$
 - Random polarizations
 - Path lengths long compared with λ : $\langle I_{12} \rangle = 0$
 - Many possible paths for light to propagate along

• Another way to have $I_{12} = 0$ is when the electric fields are orthogonal:

$$I = I_1 + I_2 + I_{12}$$
$$I_{12} = v\epsilon \vec{E}_{01} \cdot \vec{E}_{02} \cos \delta$$

- If the two electric fields correspond to opposite polarization, then there is no interference
- If the two electric fields are parallel (same polarization), then

$$I_{12} = 2\sqrt{I_1 I_2} \cos \delta$$

Interference depends on the phase difference

Two point sources:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$$

- Constructive interference: $\cos \delta > 0$
- Total constructive interference: $\cos \delta = 0, \pm 2\pi, ...$
- Destructive interference: $\cos \delta < 0$
- Total destructive interference: $\cos \delta = \pm \pi, \pm 3\pi, ...$
- Special case when $\vec{E}_{01} = \vec{E}_{02}$:

$$I = 2I_0(1 + \cos \delta) = 4I_0 \cos^2 \frac{\delta}{2}$$

Conservation of Energy

- Energy should be conserved...
- The intensity is greater than the incoherent sum in some places, but less than the incoherent sum in other places:

$$I = I_1 + I_2 + I_{12}$$
$$I_{12} = v\epsilon \vec{E}_{01} \cdot \vec{E}_{02} \cos \delta$$

- Positive definite: I_1 and I_2
- Positive and negative: I_{12}
- Spatial average of I_{12} is zero

Interference Maxima and Minima

$$I = 2I_0(1 + \cos \delta) = 4I_0 \cos^2 \frac{\delta}{2}$$

(when $\vec{E}_{01} = \vec{E}_{02}$)

- Recall that $\delta = \vec{k}_1 \cdot \vec{x} \vec{k}_2 \cdot \vec{x} + \xi_1 \xi_2$
- Consider the following case:
 - the sources are at different positions

$$-\left|\vec{k}_1\right| = \left|\vec{k}_2\right| = k$$

– the sources are in phase, $\xi_1 - \xi_2 = 0$

Interference Maxima and Minima

$$\delta = \vec{k}_1 \cdot \vec{x} - \vec{k}_2 \cdot \vec{x} + \xi_1 - \xi_2$$

$$= k(r_1 - r_2)$$

$$I = 4I_0 \cos^2 \frac{\delta}{2} = 4I_0 \cos^2 \frac{1}{2} k(r_1 - r_2)$$

- Maximum when $(r_1 r_2) = \frac{2\pi m}{k} = m\lambda$, $m = 0, \pm 1, \pm 2, ...$
- Minimum when $(r_1 r_2) = \frac{\pi m'}{k} = \frac{m'}{2} \lambda$, $m' = \pm 1, \pm 3, ...$

hyperboloid of revolution

Young's Double-Slit Experiment

Young's Double-Slit Experiment: Screen

Path difference changes across the screen:

Sequence of minima and maxima

At points where the difference in path length is $0, \pm \lambda, \pm 2\lambda, ...$, the screen is bright, (constructive).

At points where the difference in path length is $\pm \frac{\lambda}{2}$, $\pm \frac{3\lambda}{2}$, ..., the screen is dark, (destructive).

Young's Double-Slit Experiment

Constructive interference

$$a\sin\theta = m\lambda$$

Destructive interference

$$a\sin\theta = \left(m + \frac{1}{2}\right)\lambda$$

where $m = 0, \pm 1, \pm 2, ...$

Need $\lambda < a$ for distinct maxima

Example

Two slits 0.46 mm apart are 500 cm away from the screen. What would be the distance between the zero'th and first maximum for light with λ =532 nm?

Young's Double Slit Experiment

Far from the source, $s \gg a$,

$$I = 4I_0 \cos^2 \frac{\delta}{2}$$

$$= 4I_0 \cos^2 \left(\frac{k(r_1 - r_2)}{2}\right)$$

$$r_1 - r_2 = a \sin \theta \approx a \tan \theta \approx \frac{ay}{s}$$

$$I \approx 4I_0 \cos^2 \frac{kay}{2s} = 4I_0 \cos^2 \frac{\pi ay}{s\lambda}$$

Coherence Length

- 1. Spatial coherence: wave front should be coherent over distance *a*
- 2. Spatial coherence:

$$r_1 - r_2 < l_c$$

3. Waves should not be orthogonally polarized

Lasers have very long coherence lengths

White light is coherent only over short distances: $l_c \sim 3\lambda$

Other Interference Experiments: Fresnel's Double Mirror Interferometer

Other Interference Experiments: Lloyd's Mirror Interferometer

Other Interference Experiments: Fresnel's Double Prism Interferometer

 The general approach with many interference problems is to figure out how a particular system is equivalent to a double-slit experiment.

Fresnel's Double Prism Interferometer

- First, what is the spacing between the two equivalent light sources?
 - Where is the image of the light source?

Young's Double Slit Experiment

Far from the source, $s \gg a$,

$$I = 4I_0 \cos^2 \frac{\delta}{2}$$

$$= 4I_0 \cos^2 \left(\frac{k(r_1 - r_2)}{2}\right)$$

$$r_1 - r_2 = a \sin \theta \approx a \tan \theta \approx \frac{ay}{s}$$

$$I \approx 4I_0 \cos^2 \frac{kay}{2s} = 4I_0 \cos^2 \frac{\pi ay}{s\lambda}$$

Interference From Thin Films

Important result:

$$\left(\frac{E_r}{E_i}\right)_{\perp} = \frac{n_1 - n_2}{n_1 + n_2}$$

- external reflection introduces a phase shift of π
- Wavelength in a material with index of refraction n:

$$\lambda = \lambda_0/n$$

• Number of wavelengths in thickness 2d:

$$N = \frac{2dn}{\lambda_0}$$

• Phase difference: $\delta = 2\pi \left(N + \frac{1}{2}\right)$

Interference from Thin Films

Phase difference for normal incidence:

$$\delta = 2\pi \left(\frac{2nd}{\lambda_0} + \frac{1}{2} \right)$$

• Phase difference when angle of incidence is θ :

$$\delta = 2\pi \left(\frac{2nd}{\lambda_0 \cos \theta} + \frac{1}{2} \right)$$

• For monochromatic light, bright fringes have $\delta=2\pi m$ and are located at

$$\cos\theta = \frac{nd}{\pi\lambda_0 \left(m - \frac{1}{2}\right)}$$

Interference from Thin Films

Coating a Glass Lens to Suppress Reflections:

 180° phase change at both a and b since reflection is off a more optically dense medium

Air mgF_2 Glass $n_1 = 1.00$ $n_2 = 1.38$ $n_3 = 1.50$

How thick should the coating be for destructive interference?

$$2t = \frac{\lambda'}{2}$$
$$t = \frac{\lambda'}{4} = \frac{\lambda}{4n_2}$$

What frequency to use?

Visible light: 400-700 nm

Coating a Glass Lens to Suppress Reflections:

For λ = 550 nm and least thickness (m=1)

$$t = \frac{\lambda}{4n}$$

$$= \frac{550 \text{ nm}}{4 \times 1.38} = 99.6 \text{ nm}$$

- Note that the thickness needs to be different for different wavelengths.
- If the light reflected off the front and back surfaces interferes destructively, then all the energy must be transmitted

Newton's Rings

Why is center dark?

$$x^{2} + (R - d)^{2} = R^{2}$$

$$\downarrow$$

$$x^{2} = 2Rd$$

maxima: $2d = (m+\frac{1}{2})\lambda$

$$x^2 = \left(m + \frac{1}{2}\right)R\lambda$$