

Physics 42200 Waves & Oscillations

Lecture 24 – Review

Spring 2015 Semester

Matthew Jones

Midterm Exam:

Date: Thursday, March 12th

Time: 8:00 - 10:00 pm

Room: PHYS 114

Material: French, chapters 1-8

You can bring one double sided page of notes, formulas, examples, etc.

Review

- 1. Simple harmonic motion (one degree of freedom)
 - mass/spring, pendulum, floating objects, RLC circuits
 - damped harmonic motion
- 2. Forced harmonic oscillators
 - amplitude/phase of steady state oscillations
 - transient phenomena
- 3. Coupled harmonic oscillators
 - masses/springs, coupled pendula, RLC circuits
 - forced oscillations
- 4. Uniformly distributed discrete systems
 - masses on string fixed at both ends
 - lots of masses/springs

Review

- 5. Continuously distributed systems (standing waves)
 - string fixed at both ends
 - sound waves in pipes (open end/closed end)
 - transmission lines
 - Fourier analysis
- 6. Progressive waves in continuous systems
 - reflection/transmission coefficients

Simple Harmonic Motion

- Any system in which the force is opposite the displacement will oscillate about a point of stable equilibrium
- If the force is proportional to the displacement it will undergo simple harmonic motion
- Examples:
 - Mass/massless spring
 - Elastic rod (characterized by Young's modulus)
 - Floating objects
 - Torsion pendulum (shear modulus)
 - Simple pendulum
 - Physical pendulum
 - LC circuit

Simple Harmonic Motion

- You should be able to draw a free-body diagram and express the force in terms of the displacement.
- Use Newton's law: $m\ddot{x} = F$ or $I\ddot{\theta} = N$
- Write it in standard form:

$$\ddot{x} + \omega_0^2 x = 0$$

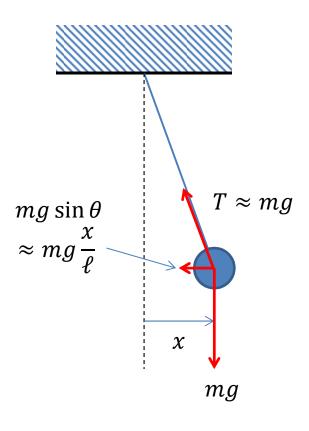
Solutions are of the form:

$$x(t) = A\cos(\omega_0 t - \delta)$$

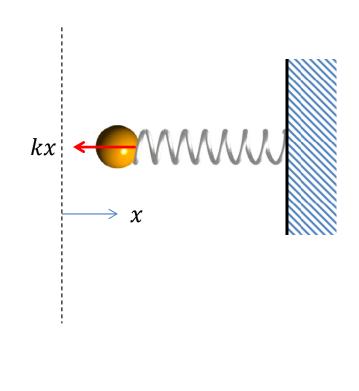
$$x(t) = A\cos\omega_0 t + B\sin\omega_0 t$$

 You must be able to use the initial conditions to solve for the constants of integration

Examples

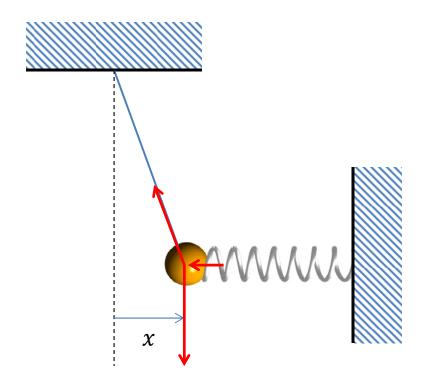


$$m\ddot{x} = -mgx/\ell$$



$$m\ddot{x} = -kx$$

Examples



$$m\ddot{x} = ?$$

Damped Harmonic Motion

- Damping forces remove energy from the system
- We will only consider cases where the force is proportional to the velocity: F = -bv
- You should be able to construct a free-body diagram and write the resulting equation of motion:

$$m\ddot{x} + b\dot{x} + kx = 0$$

— You should be able to write it in the standard form:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$

You must be able to solve this differential equation!

Damped Harmonic Motion

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$

Let $x(t) = Ae^{\alpha t}$

Characteristic polynomial:

$$\alpha^2 + \gamma \alpha + \omega_0^2 = 0$$

Roots (use the quadratic formula):

$$\alpha = -\frac{\gamma}{2} \pm \sqrt{\frac{\gamma^2}{4} - (\omega_0)^2}$$

- Classification of solutions:
 - Over-damped: $\gamma^2/4 (\omega_0)^2 > 0$ (distinct real roots)
 - Critically damped: $\gamma^2/4 = (\omega_0)^2$ (one root)
 - Under-damped: $\gamma^2/4 (\omega_0)^2 < 0$ (complex roots)

Damped Harmonic Motion

• Over-damped motion: $\gamma^2/4 - (\omega_0)^2 > 0$

$$x(t) = Ae^{-\frac{\gamma}{2}t}e^{t\sqrt{\frac{\gamma^2}{4}} - (\omega_0)^2} + Be^{-\frac{\gamma}{2}t}e^{-t\sqrt{\frac{\gamma^2}{4}} - (\omega_0)^2}$$

• Under-damped motion: $\gamma^2/4 - (\omega_0)^2 < 0$

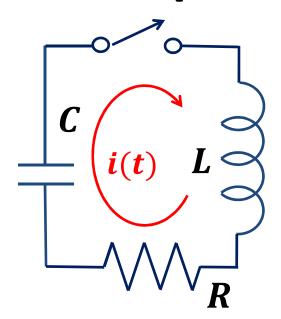
$$x(t) = Ae^{-\frac{\gamma}{2}t}e^{it\sqrt{(\omega_0)^2 - \frac{\gamma^2}{4}}} + Be^{-\frac{\gamma}{2}t}e^{-it\sqrt{(\omega_0)^2 - \frac{\gamma^2}{4}}}$$

Critically damped motion:

$$x(t) = (A + Bt)e^{-\frac{\gamma}{2}t}$$

 You must be able to use the initial conditions to solve for the constants of integration

Example



Sum of potential differences:

$$-L\frac{di}{dt} - i(t)R - \frac{1}{C}\left(Q_0 + \int_0^t i(t)dt\right) = 0$$

Initial charge, Q_0 , defines the initial conditions.

Example

$$L\frac{di}{dt} + i(t)R + \frac{1}{C}\left(Q_0 + \int_0^t i(t)dt\right) = 0$$

Differentiate once with respect to time:

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i(t) = 0$$
$$\frac{d^2i}{dt^2} + \gamma\frac{di}{dt} + \omega_0^2i(t) = 0$$

Remember, the solution is i(t) but the initial conditions might be in terms of $Q(t) = Q_0 + \int i(t) dt$

(See examples from the lecture notes...)

Forced Harmonic Motion

Now the differential equation is

$$m\ddot{x} + b\dot{x} + kx = F(\omega) = F_0 \cos \omega t$$

 Driving function is not always given in terms of a real force... (think about non-inertial reference frames):

$$\ddot{y} + \gamma \dot{y} + \omega_0^2 y = -\frac{d^2 \eta}{dt^2} = C\omega^2 \cos \omega t$$

- General properties:
 - Steady state properties: $t \gg 1/\gamma$
 - Solution is $y(t) = A\cos(\omega t \delta)$
 - Amplitude, A, and phase, δ , depend on ω

Forced Harmonic Motion

"Q" quantifies the amount of damping:

$$Q = \frac{\omega_0}{\gamma}$$

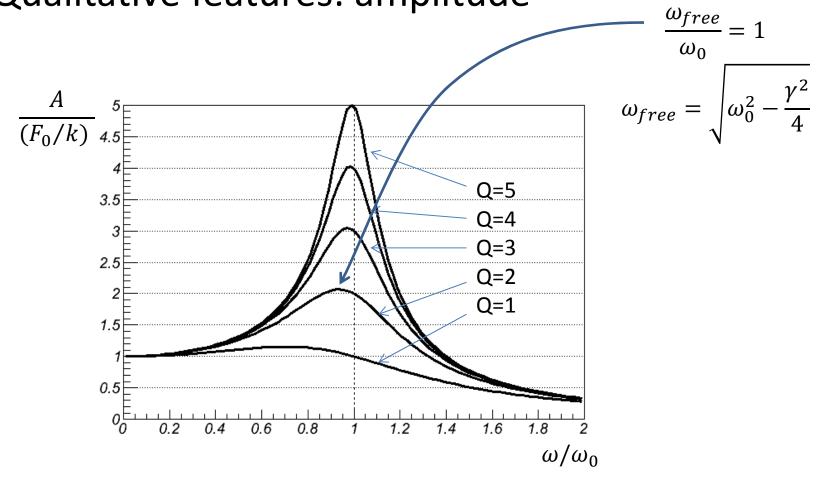
(large Q means small damping force)

$$A(\omega) = \frac{F_0}{k} \frac{\omega_0/\omega}{\left[\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q^2}\right]^{1/2}}$$
$$\delta = \tan^{-1}\left(\frac{1/Q}{\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}}\right)$$

But watch out when $F_0 = C\omega^2$

Resonance

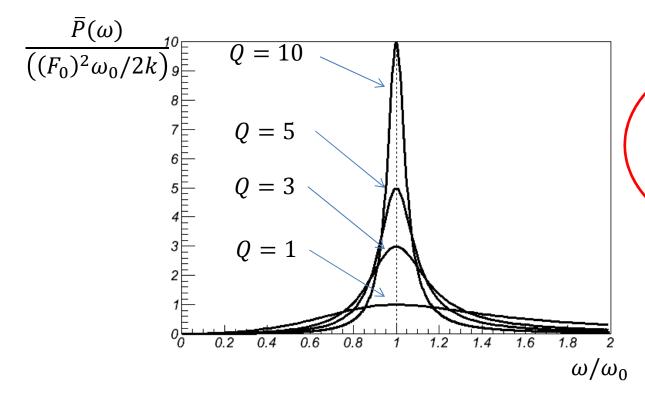
Qualitative features: amplitude



Average Power

The rate at which the oscillator absorbs energy is:

$$\bar{P}(\omega) = \frac{(F_0)^2 \omega_0}{2kQ} \frac{1}{\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q^2}}$$



Full-Width-at-Half-Max:

$$FWHM = \frac{\omega_0}{O} = \gamma$$

Resonance

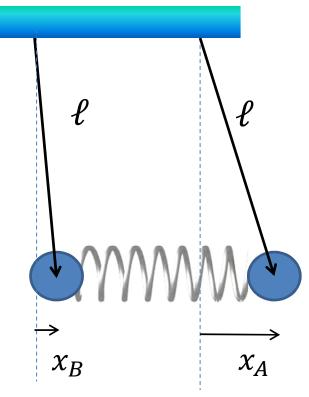
Qualitative features: phase shift

$$\delta = \tan^{-1} \left(\frac{1/Q}{\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}} \right)$$

 $\delta \to 0$ at low frequencies

 $\delta \to \pi$ at high frequencies

$$\delta=rac{\pi}{2}$$
 when $\omega=\omega_0$



 Restoring force on pendulum A:

$$F_A = -k(x_A - x_B)$$

Restoring force on pendulum B:

$$F_B = k(x_A - x_B)$$

$$m\ddot{x}_A + \frac{mg}{\ell}x_A + k(x_A - x_B) = 0$$

$$m\ddot{x}_B + \frac{mg}{\ell}x_B - k(x_A - x_B) = 0$$

 You must be able to draw the free-body diagram and set up the system of equations.

$$m\ddot{x}_A + \frac{mg}{\ell}x_A + k(x_A - x_B) = 0$$

$$m\ddot{x}_B + \frac{mg}{\ell}x_B - k(x_A - x_B) = 0$$

You must be able to write this system as a matrix equation.

$$\begin{pmatrix} \ddot{x}_A \\ \ddot{x}_B \end{pmatrix} + \begin{pmatrix} (\omega_0)^2 + (\omega_c)^2 & -(\omega_c)^2 \\ -(\omega_c)^2 & (\omega_0)^2 + (\omega_c)^2 \end{pmatrix} \begin{pmatrix} x_A(t) \\ x_B(t) \end{pmatrix} = 0$$

Assume solutions are of the form

$$\begin{pmatrix} x_A(t) \\ x_B(t) \end{pmatrix} = \begin{pmatrix} x_A \\ x_B \end{pmatrix} \cos(\omega t - \delta)$$

Then,

$$\begin{pmatrix} (\omega_0)^2 + (\omega_c)^2 - \omega^2 & -(\omega_c)^2 \\ -(\omega_c)^2 & (\omega_0)^2 + (\omega_c)^2 - \omega^2 \end{pmatrix} \begin{pmatrix} \chi_A \\ \chi_B \end{pmatrix} = 0$$

- You must be able to calculate the eigenvalues of a 2x2 or 3x3 matrix.
 - Calculate the determinant
 - Calculate the roots by factoring the determinant or using the quadratic formula.
- These are the frequencies of the normal modes of oscillation.

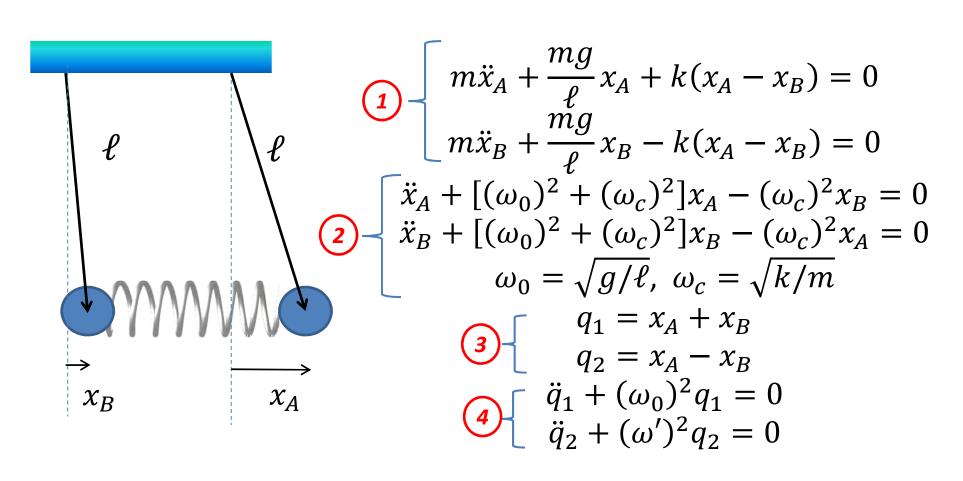
- You must be able to calculate the eigenvectors of a 2x2 or 3x3 matrix
- General solution:

$$\vec{x}(t) = \mathbf{A}\vec{x}_1\cos(\omega_1 t - \alpha) + \mathbf{B}\vec{x}_2\cos(\omega_2 t - \beta) + \cdots$$

 You must be able to solve for the constants of integration using the initial conditions.

Coupled Discrete Systems

 The general method of calculating eigenvalues will always work, but for simple systems you should be able to decouple the equations by a change of variables.



Forced Oscillations

- We mainly considered the qualitative aspects
 - We did not analyze the behavior when damping forces were significant
- Main features:
 - Resonance occurs at each normal mode frequency
 - Phase difference is $\delta = \pi/2$ at resonance
- Example: x_A driven by the force $F(\omega) = F_0 \cos \omega t$
 - Calculate force term applied to normal coordinates

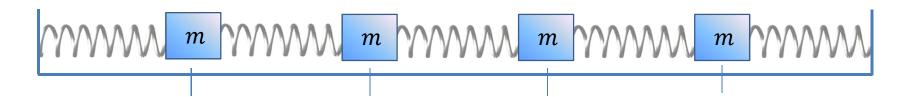
$$F_1(\omega) = F_2(\omega) = F_0 \cos \omega t$$

Reduced to two one-dimensional forced oscillators:

$$\ddot{q}_1 + (\omega_0)^2 q_1 = F_0/m \cos \omega t$$

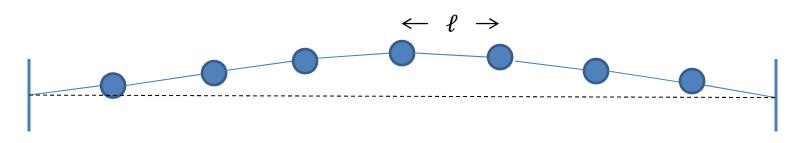
$$\ddot{q}_2 + (\omega')^2 q_2 = F_0/m \cos \omega t$$

Uniformly Distributed Discrete Systems



Equations of motion for masses in the middle:

$$\ddot{x}_i + 2(\omega_0)^2 x_i - (\omega_0)^2 (x_{i-1} + x_{i+1}) = 0$$
$$(\omega_0)^2 = k/m$$



$$\ddot{y}_n + 2(\omega_0)^2 y_n - (\omega_0)^2 (y_{n+1} + y_{n-1}) = 0$$
$$(\omega_0)^2 = T/m\ell$$

Uniformly Distributed Discrete Masses

Proposed solution:

$$\frac{x_n(t) = A_n \cos \omega t}{A_{n-1} + A_{n+1}} = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

We solved this to determine A_n and ω_k : lacktriangle

his to determine
$$A_n$$
 and ω_k :
$$A_{n,k} = C \sin\left(\frac{nk\pi}{N+1}\right) \begin{array}{l} \text{Amplitude of mass } n \\ \text{Amplitude of mass } n \\ \text{Amplitude of mormal} \\ \text{Oscillating in normal} \\ \text{oscillating in normal} \\ \text{mode } k \\ \text{mode } k \end{array}$$

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right) \begin{array}{l} \text{Frequency of normal} \\ \text{Frequency of normal} \\ \text{mode } k \end{array}$$

$$\text{Exion:}$$

General solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \delta_k)$$

Vibrations of Continuous Systems

General solution for mass n:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \delta_k)$$

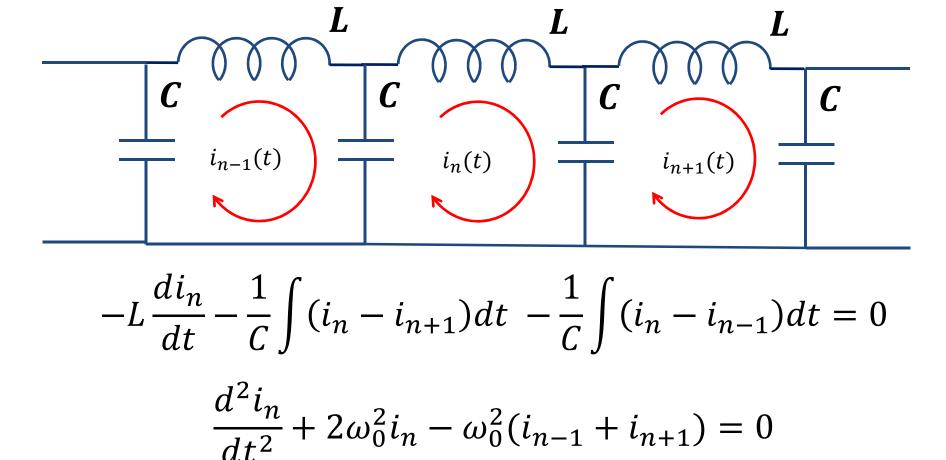
Orthogonality relation:

$$\sum_{k=1}^{N} \sin\left(\frac{mk\pi}{N+1}\right) \sin\left(\frac{nk\pi}{N+1}\right) = \frac{N}{2} \delta_{mn}$$

Solution to initial value problem:

$$\sum_{n=1}^{N} x_n(0) \sin\left(\frac{nk\pi}{N+1}\right) = \frac{N}{2} a_k \cos \delta_k$$

Lumped LC Circuit



This is the exact same problem as the previous two examples.

Forced Coupled Oscillators

- Qualitative features are the same:
 - Motion can be decoupled into a set of N independent oscillator equations (normal modes)
 - Amplitude of normal mode oscillations are large when driven with the frequency of the normal mode
 - Phase difference approaches $\pi/2$ at resonance
- You should be able to anticipate the qualitative behavior when coupled oscillators are driven by a periodic force.

Continuous Distributions

Limit as $N \to \infty$ and $m/\ell \to \mu$:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

Boundary conditions specified at x = 0 and x = L:

- Fixed ends: y(0) = y(L) = 0
- Maximal motion at ends: $\dot{y}(0) = \dot{y}(L) = 0$
- Mixed boundary conditions

Normal modes will be of the form

$$y_n(x,t) = a_n \sin(k_n x) \cos(\omega_n t - \alpha_n)$$

or
$$y_n(x,t) = a_n \cos(k_n x) \cos(\omega_n t - \alpha_n)$$

Properties of the Solutions

$$y(L,t) \sim \sin k_n L = 0 \quad \Rightarrow \quad k_n L = n\pi$$

$$\Rightarrow$$

$$k_n L = n\pi$$

mode

wavelength

frequency

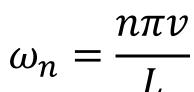
first

2L

$$\lambda_n = \frac{2L}{n}$$

second

L



third

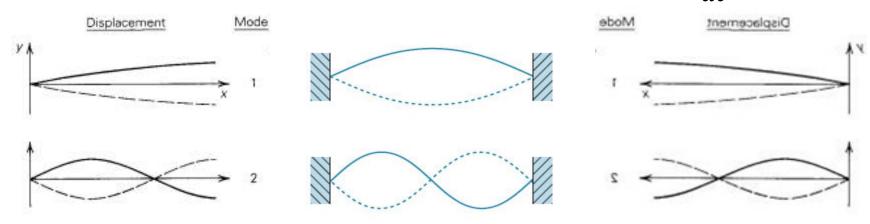
$$f_n = \frac{nv}{2L}$$

fourth

Boundary Conditions

Examples:

- String fixed at both ends: y(0) = y(L) = 0
- Organ pipe open at one end: $\dot{y}(0) = \dot{y}(L) = 0$
 - Driving end has maximal pressure amplitude
- Organ pipe closed at one end: $\dot{y}(0) = 0$, y(L) = 0
- Transmission line open at one end: i(L) = 0
- Transmission line shorted at one end: $v(L) \propto \frac{di(L)}{dt} = 0$



• Normal modes satisfying y(0) = y(L) = 0:

$$y_n(x,t) = a_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \alpha_n)$$

General solution:

$$y(x,t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \alpha_n)$$

Initial conditions:

$$y(x,0) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right) \cos(\alpha_n) = \sum_{n=1}^{\infty} a'_n \sin\left(\frac{n\pi x}{L}\right)$$
$$\dot{y}(x,0) = -\sum_{n=1}^{\infty} a_n \omega_n \sin\left(\frac{n\pi x}{L}\right) \sin(\alpha_n) = \sum_{n=1}^{\infty} b'_n \sin\left(\frac{n\pi x}{L}\right)$$

• Fourier sine transform:

$$u(x) = \sum_{n=1}^{\infty} a'_n \sin\left(\frac{n\pi x}{L}\right)$$
$$a'_n = \frac{2}{L} \int_0^L u(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Fourier cosine transform:

$$b'_{n} = \frac{2}{L} \int_{0}^{L} v(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$a'_{n} = a_{n} \cos \alpha_{n}$$
$$b'_{n} = a_{n} \omega_{n} \sin \alpha_{n}$$

Solve for amplitudes:

$$a_n = \sqrt{a'_n^2 + \frac{b'_n^2}{\omega_n^2}}$$

Solve for phase:

$$\tan \alpha_n = \frac{b'_n}{a'_n \omega_n}$$

- Suggestion: don't simply rely on these formulas use your knowledge of the boundary conditions and initial conditions.
- Example:
 - If you are given $\dot{y}(x,0) = 0$ and y(0) = y(L) = 0 then you know that solutions are of the form

$$y(x,t) = \sum a_n \sin\left(\frac{n\pi x}{L}\right) \cos \omega_n t$$

- If you are given y(x,0) = 0 and y(0) = y(L) = 0 then solutions are of the form

$$y(x,t) = \sum_{odd,n} a_n \sin\left(\frac{n\pi x}{L}\right) \sin\omega_n t$$

Progressive Waves

Far from the boundaries, other descriptions are more transparent:

$$y(x,t) = f(x \pm vt)$$

The Fourier transform gives the frequency components:

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cos(kx) dx$$

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) \cos(kx) dk + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} B(k) \sin(kx) dk B(k)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \sin(kx) dx$$

- Narrow pulse in space
 wide range of frequencies
- Pulse spread out in space
 narrow range of frequencies

Properties of Progressive Waves

- Power carried by a wave:
 - String with tension T and mass per unit length μ

$$P = \frac{1}{2}\mu\omega^{2}A^{2}v = \frac{1}{2}Z\omega^{2}A^{2}$$

• Impedance of the medium:

$$Z = \mu v = T/v$$

- Important properties:
 - Impedance is a property of the medium, not the wave
 - Energy and power are proportional to the square of the amplitude

Reflections

- Wave energy is reflected by discontinuities in the impedance of a system
- Reflection and transmission coefficients:
 - The wave is incident and reflected in medium 1
 - The wave is transmitted into medium 2

$$ho = rac{Z_2 - Z_1}{Z_1 + Z_2} \ au = rac{2Z_2}{Z_1 + Z_2}$$

Important: when is this negative?

Wave amplitudes:

$$A_r = \rho A_i$$
$$A_t = \tau A_i$$

Reflected and Transmitted Power

- Power is proportional to the square of the amplitude.
 - Reflected power: $P_r = \rho^2 P_i$
 - Transmitted power: $P_t = \tau^2 P_i$
- You should be able to demonstrate that energy is conserved:

ie, show that
$$P_i = P_r + P_t$$

That's all for now...

 Study these topics – make sure you understand the examples and assignment questions.

Next topics: waves applied to optics.