PURDUE D) EpaRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 24 — Review
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Midterm Exam:

Date: Thursday, March 12th
Time: 3:00 —10:00 pm
Room: PHYS 114

Material: French, chapters 1-8

You can bring one double sided page
of notes, formulas, examples, etc.



Review

1. Simple harmonic motion (one degree of freedom)
— mass/spring, pendulum, floating objects, RLC circuits
— damped harmonic motion

2. Forced harmonic oscillators
— amplitude/phase of steady state oscillations
— transient phenomena

3. Coupled harmonic oscillators
— masses/springs, coupled pendula, RLC circuits
— forced oscillations

4. Uniformly distributed discrete systems

— masses on string fixed at both ends
— lots of masses/springs



Review

5. Continuously distributed systems (standing waves)
— string fixed at both ends
— sound waves in pipes (open end/closed end)
— transmission lines
— Fourier analysis

6. Progressive waves in continuous systems

— reflection/transmission coefficients



Simple Harmonic Motion

* Any system in which the force is opposite the
displacement will oscillate about a point of stable
equilibrium

* |If the force is proportional to the displacement it will
undergo simple harmonic motion

 Examples:
— Mass/massless spring
— Elastic rod (characterized by Young’s modulus)
— Floating objects
— Torsion pendulum (shear modulus)
— Simple pendulum
— Physical pendulum
— LC circuit



Simple Harmonic Motion

You should be able to draw a free-body diagram and
express the force in terms of the displacement.

Use Newton’s law: mX = ForI@ = N

Write it in standard form:
¥+ wix =0
Solutions are of the form:
x(t) = Acos(wyt — 95)
x(t) = Acoswyt + Bsinwyt
You must be able to use the initial conditions to
solve for the constants of integration



Examples

\

> X

mx = —mgx/{ mx = —kx



Examples
\




Damped Harmonic Motion

 Damping forces remove energy from the system

 We will only consider cases where the force is
proportional to the velocity: F = —bv

* You should be able to construct a free-body diagram
and write the resulting equation of motion:
mx +bx + kx =0
— You should be able to write it in the standard form:
X¥+yx+ wix =0
* You must be able to solve this differential equation!



Damped Harmonic Motion

X+yx+wix=0
Let x(t) = Ae%t
e Characteristic polynomial:
a? +ya+ wi =0
* Roots (use the quadratic formula):

2
Y Y
a=-L4 [T (w2
2 4
\
e C(Classification of solutions:

— Over-damped: y%/4 — (wg)? > 0 (distinct real roots)
— Critically damped: y%/4 = (wy)?  (one root)
— Under-damped: y2/4 — (wg)? < 0 (complex roots)




Damped Harmonic Motion

e Over-damped motion: y%/4 — (wg)? > 0

x(t) = Ae_%tet\/ﬁ_(wo)2 + Be_%te_t\/ﬁ_(wo)2
 Under-damped motion: y?/4 — (wg)? < 0
x(t) = Ae__t lt\/(w‘))z__ + Be™ 5t _lt\/(w )2__
e Critically damped motion:
x(t) =(A+ Bt)e_%t

* You must be able to use the initial conditions to
solve for the constants of integration




Sum of potential differences:

di 1 t
—Ld—;— i(t)R _E<Q° + fo i(t)dt) =0

Initial charge, @, defines the initial conditions.



Example

Ld—+z(t)R+ (QO fi(t)dt)z
0

dt
Differentiate once with respect to time:
d?i di 1
LF'FRdt-FCl(t) =(
d?i di
7 +)/d + wii(t) =0

Remember, the solution is i(t) but the initial
conditions might be in terms of Q(t) = Q, + [ i(t)dt

(See examples from the lecture notes...)



Forced Harmonic Motion

 Now the differential equation is
mi + bx + kx = F(w) = F, cos wt
e Driving function is not always given in terms of a real
force... (think about non-inertial reference frames):
N d*n ,
y+vyy+wyy = T Cw* cos wt
* General properties:
— Steady state properties: t > 1/y
— Solution is y(t) = A cos(wt — 6)
— Amplitude, 4, and phase, 4, depend on w



Forced Harmonic Motion

“Q” quantifies the amount of damping:
Wy
Q=—
14

(large Q means small damping force)

wo/w

Alw) = Fo

e-ay

1
5 =tan~! (0)0 iQw )
w W

But watch out when Fy = Cw?

1/2




Resonance

Qualitative features: amplitude
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Average Power

* The rate at which the oscillator absorbs energy is:
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Resonance

* Qualitative features: phase shift

0 — 0 at low frequencies
0 — m at high frequencies

w
6=Ewhenw=w0



Coupled Oscillators

* Restoring force on

| i pendulum A:

| € \f Fy = —k(x4 — xp)

: i * Restoring force on
pendulum B:

@\ Fip = k(xa = xp)

F)XB X4
m

mjéA | {ng-I-k(xA—xB) = ()
m

mjéB : ng—k(xA—xB):O

4



Coupled Oscillators

* You must be able to draw the free-body diagram
and set up the system of equations.

m
mi, + Tng + k(xg —xg) =0
. mg
mxB +7xB — k(xA — xB) —_ O

* You must be able to write this system as a matrix
equation.

(5@4) + <(wo)2 + (wc)? ey >(xA(t)) =0

Xpg —(w,)? (wg)? + (w,)? ) \xp(t)



Coupled Oscillators

Assume solutions are of the form

(xA(t)) = (;C’;) cos(wt — 6)

xp(t)
Then,
(<w0>2 +(00)? — o (o) >(x,4) .,
_(wc)z (wo)z T (wc)z _ (‘)2 XB

You must be able to calculate the eigenvalues of a 2x2
or 3x3 matrix.

— Calculate the determinant

— Calculate the roots by factoring the determinant or using the
quadratic formula.

These are the frequencies of the normal modes of
oscillation.



Coupled Oscillators

* You must be able to calculate the eigenvectors of a
2x2 or 3x3 matrix

 General solution:
x(t) = Ax; cos(w,t — a) + Bx, cos(w,t — ) + -+
 You must be able to solve for the constants of
integration using the initial conditions.



Coupled Discrete Systems

* The general method of calculating eigenvalues will always
work, but for simple systems you should be able to decouple
the equations by a change of variables.

—

m

@ ma’c’A+Tng+k(xA—xB)=O
1o myg

~mx3+7x3—k(xA—xB)=O

%a 4 [(@0)? + (we)? x4 — (we)2x5 = 0
@ 5 + [(00)? + (@) — (@0)?x4 = O
B Wy = W, w, =+ k/m
1 = Xg T Xp
@{ 2 = X4 — XB
G + (wo)?q1 =0
G4, + (w)?*q, =0




Forced Oscillations

 We mainly considered the qualitative aspects

— We did not analyze the behavior when damping forces
were significant

 Main features:
— Resonance occurs at each normal mode frequency
— Phase difference is § = /2 at resonance

* Example: x4 driven by the force F(w) = F, cos wt

— Calculate force term applied to normal coordinates
Fi(w) = F,(w) = F, cos wt
— Reduced to two one-dimensional forced oscillators:
G, + (wg)?q, = Fy/m cos wt
G, + (w')?q, = Fy/m cos wt



Uniformly Distributed Discrete Systems

oWy WWWIRER WA W

Equations of motion for masses in the middle:
% + 2(wo)?x; — (0o)* (X1 + Xi41) =0

(a)o)z =k/m

«~— ¢ =

Yn + 2((‘)0)23"71 — (wo)z(yn+1 + yn—l) =0
(wo)z =T/m¢t



Uniformly Distributed Discrete Masses

Proposed solution:
x,(t) = A, cos wt
Apg +An  —0® + 2(wg)?

Ap (wo)? oo™
We solved this to determine A, and wy: p-\wd ?1(:0@&
A. . = C sin ( i ) P:;é‘\\a‘\“%
Tk N +1 @
_ _ km \)e(\ol of
Wi = 2o SIN (Z(N n 1)) o

General solution:

- nkm
X, (t) = Z ay sin( n ) cos(wyt — 0y)




Vibrations of Continuous Systems

* General solution for mass n:

N
X, (t) = 2 a; sin (1\7]:1) cos(wyt — &)
* Orthogonality }[rce_lgtion:
- [ mkm\ nkm \ N
C MR
e Solution to initial value problem:

N

_ nkm N
z x,, (0) sin N1 1) = 7 W Cos S

n=1




Lumped LC Circuit
L

SIS a1 1 Nz 1n

C
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| |

152 [ = it =5 [ =ty e = 0

déi,
dt?

+ Zwoln wg(in—l +in+1) =0

This is the exact same problem as the previous two examples.



Forced Coupled Oscillators

e Qualitative features are the same:

— Motion can be decoupled into a set of N
independent oscillator equations (normal modes)

— Amplitude of normal mode oscillations are large
when driven with the frequency of the normal
mode

— Phase difference approaches /2 at resonance

* You should be able to anticipate the
qualitative behavior when coupled oscillators
are driven by a periodic force.



Continuous Distributions

Limitas N - coand m/¥ — u:
0%y 1 0%y
dx2  v2 ot2
Boundary conditions specified at x = 0 and x = L:
— Fixed ends: y(0) = y(L) =0
— Maximal motion at ends: y(0) = y(L) =0

— Mixed boundary conditions
Normal modes will be of the form
v, (x,t) = a, sin(k,,x) cos(w,t — a,)
or v, (x,t) = a, cos(k,x) cos(w,t — a,,)



Properties of the Solutions

y(L,t)~sink,L=0 =  k,L=nn

maode wavelength frequency

first 2L ﬁ ZL
Ay = =
n
| L };_
nitv
Wy = —
third & E L
3 2L
nv




Boundary Conditions

e Examples:
— String fixed at both ends: y(0) = y(L) =0
— Organ pipe open atoneend: y(0) = y(L) =0
* Driving end has maximal pressure amplitude
— Organ pipe closed at oneend: y(0) =0, y(L) =0
— Transmission line open atone end: i(L) = 0

T di(L
— Transmission line shorted at one end: v(L) « (L) _

Displacement hode ey | Insmaoalgeid




Fourier Analysis

* Normal modes satisfying y(0) = y(L) = 0:
. (NTTX
v, (x,t) = a, sin (T) cos(w,t — ay)

* General solution:

- o nmux
y(x,t) = 2 a,, sin (T) cos(w,t — ay)
n=1

e |nitial conditions:

0.0)

_ nnx = nnx
y(x,0) = 2 a, sm( 7 cos(an) = z a., sm

n=1
00

. . Mmmx , nnx
y(x,0)=—zanwnsm( 7 )sm(an)—zbnsm 7 )

n=1



Fourier Analysis

 Fourier sine transform:

u(x) = i a',, sin (nLLx)
21=1
a, = %f u(x) sin (nLLx) dx
0

* Fourier cosine transform:

" _Zjl' (TlT[X)d
n=7 \ v(x) cos T X



Fourier Analysis

, —
/ . .
b, = a,w, sin a,
Solve for amplitudes:

b'2
_ 12 n
\ “n
Solve for phase:
/
b’y
tan a,, = —

d nWn



Fourier Analysis

* Suggestion: don’t simply rely on these formulas — use

your knowledge of the boundary conditions and initial
conditions.

 Example:

— If you are given y(x,0) = 0and y(0) = y(L) = 0 then you
know that solutions are of the form
nmwx

y(x,t) = z a,,sin (T) COS wyt

— If you are given y(x,0) = 0 and y(0) = y(L) = 0 then
solutions are of the form

. NTXN
y(x,t) = z a,,sin (T) sin w,,t

oddn



Progressive Waves

e Far from the boundaries, other descriptions are more transparent:
y(x, t) = f(x £ vt)
 The Fourier transform gives the frequency components:

1 (0]
ooA(k) = Ej_mg (x) cos(olix) dx
g(x) = \/%_ﬂ J_OOA(k) cos(kx) dk + \/%_ﬂ j_ooB (k) sin(kx) dk B (k)

1 (@ |
= Ef— g(x) sin(kx) dx

* Narrow pulse in space =2 wide range of frequencies
e Pulse spread out in space =2 narrow range of frequencies



Properties of Progressive Waves

 Power carried by a wave:

— String with tension T and mass per unit length u

1 1
P = E,ua)zsz = EZCUZAZ
 Impedance of the medium:
Z=u=T/v

* Important properties:
— Impedance is a property of the medium, not the wave

— Energy and power are proportional to the square of the
amplitude



Reflections

 Wave energy is reflected by discontinuities in the impedance
of a system

 Reflection and transmission coefficients:
— The wave is incident and reflected in medium 1

‘\\
— The wave is transmitted into medium 2 ‘a‘\xz\N\f
— ot N
p = YA 2 YA 1 \((;ES “e%a’&\
Z,+Z, v e
ZZZ QOS\‘\
T = P\\\Na\ls
i+ 2,

 Wave amplitudes:
A = pAl
At — TA



Reflected and Transmitted Power

 Power is proportional to the square of the
amplitude.
— Reflected power: P. = p*P;
— Transmitted power: P, = T2P;

* You should be able to demonstrate that energy is
conserved:

ie, show that P; = P,. + P,



That’s all for now...

e Study these topics — make sure you

understand the examples and assignment
guestions.

* Next topics: waves applied to optics.



