

Physics 42200 Waves & Oscillations

Lecture 23 – French, Chapter 8

Spring 2015 Semester

Matthew Jones

Midterm Exam:

Date: Thursday, March 12th

Time: 8:00 - 10:00 pm

Room: PHYS 114

Material: French, chapters 1-8

You can bring one double sided page of notes, formulas, examples, etc.

All systems like this must satisfy the wave equation:

$$\nabla^2 p = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

- 1. Find the kinds of solutions that satisfy the *boundary* conditions (normal modes).
- 2. Calculate the frequencies of the normal modes.
- 3. Solve for the constants of integration that satisfy the *initial conditions*.

Consider a thin rectangular membrane:

• We want to find solutions to the wave equation, z(x, y, t).

Wave equation:

$$\nabla^2 z = \frac{\sigma}{S} \frac{\partial^2 z}{\partial t^2}$$

Boundary conditions (in this example):

$$z(0, y, t) = 0 \text{ and } z(L_x, y, t) = 0$$

$$z(x,0,t) = 0$$
 and $z(x,L_{v},t) = 0$

$$z(0, y, t) = 0$$
 and $z(L_x, y, t) = 0$
 $z(x, 0, t) = 0$ and $z(x, L_y, t) = 0$

Proposed solution:

$$z(x, y, t) = C_{n_1 n_2} \sin\left(\frac{n_1 \pi x}{L_x}\right) \sin\left(\frac{n_2 \pi y}{L_y}\right) \cos\left(\omega_{n_1 n_2} t + \varphi_{n_1 n_2}\right)$$

- We might anticipate that $\varphi_{n_1n_2}=0$, depending on the initial conditions, or just set it to zero if we are mainly interested in steady state behavior or general properties of the solution.
- In this case:

$$z(x, y, t) = C_{n_1 n_2} \sin\left(\frac{n_1 \pi x}{L_x}\right) \sin\left(\frac{n_2 \pi y}{L_y}\right) \cos(\omega_{n_1 n_2} t)$$

$$z(x, y, t) = C_{n_1 n_2} \sin\left(\frac{n_1 \pi x}{L_x}\right) \sin\left(\frac{n_2 \pi y}{L_y}\right) \cos(\omega_{n_1 n_2} t)$$

Derivatives:

$$\frac{\partial^2 z}{\partial x^2} = -\left(\frac{n_1 \pi}{L_x}\right)^2 z(x, y, t)$$

$$\frac{\partial^2 z}{\partial y^2} = -\left(\frac{n_2 \pi}{L_y}\right)^2 z(x, y, t)$$

$$\frac{\partial^2 z}{\partial t^2} = -\omega_{n_1 n_2}^2 z(x, y, t)$$

Substitute into the wave equation:

$$\left(\left(\frac{n_1\pi}{L_x}\right)^2 + \left(\frac{n_2\pi}{L_y}\right)^2 - \frac{\sigma}{S}\omega_{n_1n_2}^2\right)z(x,y,t) = 0$$

Frequencies of normal modes:

$$\omega_{n_1 n_2} = \pm \sqrt{\frac{S}{\sigma}} \left[\left(\frac{n_1 \pi}{L_x} \right)^2 + \left(\frac{n_2 \pi}{L_y} \right)^2 \right]^{1/2}$$

We did the same thing with circular waves:

$$\nabla^2 z = \frac{1}{v^2} \frac{\partial^2 z}{\partial t^2}$$

In polar coordinates:

$$\frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} = \frac{1}{v^2} \frac{\partial^2 z}{\partial t^2}$$

 If the waves are rotationally symmetric (they don't have to be) then:

$$\frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} = \frac{1}{v^2} \frac{\partial^2 z}{\partial t^2}$$

As usual, we can assume that the solution might factor:

$$z(r,t) = f(r)\cos(\omega t)$$

Then,

$$\frac{\partial^2 z}{\partial t^2} = -\omega^2 z(r, t)$$
$$\frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{\omega^2}{v^2} z = 0$$

- For convenience, we changed variables: $\rho = kr = r\omega/v$
- As in the rectangular case, we might expect that $v=\sqrt{S/\sigma}$

$$\frac{\partial^2 \psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \psi(\rho) = 0$$

- We recognized that this was Bessel's equation which has solutions $J_0(kr)$ and $Y_0(kr)$ which can't be written exactly in terms of more familiar analytic functions.
- But, to a very good approximation, we can write:

$$J_0(kr) \approx \sqrt{2/\pi} \frac{\cos(kr - \pi/4)}{\sqrt{kr}}$$
 $Y_0(kr) \approx \sqrt{2/\pi} \frac{\sin(kr - \pi/4)}{\sqrt{kr}}$
when $kr \gg 1$.

• Boundary conditions: if $\psi(kr)=0$ when r=R and $\psi(kr)$ remains finite when $r\to 0$ then solutions are of the form $\psi(kr)=J_0(kr)$ and

$$J_0(kR) \approx \sqrt{2/\pi} \frac{\cos\left(kR - \frac{\pi}{4}\right)}{\sqrt{kR}} = 0$$

• k must satisfy:

$$kR - \frac{\pi}{4} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, etc...$$

 $k = \frac{3\pi}{4R}, \frac{7\pi}{4R}, \frac{11\pi}{4R}, etc...$

- What if the solutions were not rotationally symmetric?
- We could try to look for solutions of the form

$$z(r, \theta, t) = \psi(r)\chi(\theta)\cos(\omega t)$$

• The function $\chi(\theta)$ doesn't really have a boundary, but it must be periodic:

$$\chi(\theta) = \chi(\theta + 2\pi)$$

A natural choice would be

$$\chi(\theta) = C\cos m\theta + D\sin m\theta$$

Then

$$\frac{\partial^2 z}{\partial \theta^2} = m^2 z$$

• When $\chi(\theta) = C \cos m\theta + D \sin m\theta$, the differential equation becomes:

$$\frac{\partial^{2} z}{\partial r^{2}} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}} = \frac{1}{v^{2}} \frac{\partial^{2} z}{\partial t^{2}}$$
$$\frac{\partial^{2} z}{\partial r^{2}} + \frac{1}{r} \frac{\partial z}{\partial r} - \frac{m^{2}}{r^{2}} z = \frac{1}{v^{2}} \frac{\partial^{2} z}{\partial t^{2}}$$

• Convenient change of variables: $\rho = kr = r\omega/v$

$$\frac{\partial^2 \psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \left(\psi(\rho) - \frac{m^2}{\rho^2} \right) = 0$$

• This isn't quite what we had before unless m=0.

$$\frac{\partial^2 \psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \left(\psi(\rho) - \frac{m^2}{\rho^2} \right) = 0$$

- Now the solutions are the more general Bessel functions: $J_m(kr)$ and $Y_m(kr)$.
- For this course it is sufficient to recognize that these are the solutions... that's all.
- You can look up their properties (eg. roots) or find computer libraries to calculate them if you ever need to.

Example

https://www.youtube.com/watch?v=v4ELxKKT5Rw

Waves in Three Dimensions

• In spherical coordinates (r, θ, ϕ) the Laplacian is:

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r\psi) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$

- When $\psi(\vec{r},t)$ is independent of θ and ϕ then the second line is zero.
- This time, let $\psi(r,t) = \frac{f(r)}{r} \cos \omega t$
- Time derivative: $\frac{\partial^2 \psi}{\partial t^2} = -\omega^2 \psi$

Waves in Three Dimensions

• Let $\psi(r,t) = \frac{f(r)}{r} \cos \omega t$ $\nabla^2 \psi = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r\psi)$ $= \frac{1}{r} \frac{\partial^2}{\partial r^2} f(r) \cos \omega t = -\frac{\omega^2}{v^2} \frac{f(r)}{r} \cos \omega t$ $\frac{\partial^2 f}{\partial r^2} = -\frac{\omega^2}{v^2} f(r)$

We know the solution to this differential equation:

$$f(r) = Ae^{ikr}$$

The solution to the wave equation is

$$\psi(r,t) = A \frac{e^{ikr}}{r} \cos \omega t$$

Waves in Three Dimensions

Or we could write

$$\psi(r,t) = A \frac{\cos k(r \mp vt)}{r}$$

- Waves carry energy proportional to amplitude squared: $\propto 1/r^2$
- The energy is spread out over a surface with area $4\pi r^2$
- Energy is conserved
- Looks like a plane wave at large r

