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Midterm Exam:

Date: Thursday, March 12th

Time: 8:00 – 10:00 pm

Room: PHYS 114

Material: French, chapters 1-8

You can bring one double sided page 

of notes, formulas, examples, etc.



Waves in Two Dimensions

• All systems like this must satisfy the wave equation:
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1. Find the kinds of solutions that satisfy the boundary 

conditions (normal modes).

2. Calculate the frequencies of the normal modes.

3. Solve for the constants of integration that satisfy 

the initial conditions. 



Waves in Two Dimensions

• Consider a thin rectangular membrane:

• We want to find solutions to the wave 

equation, 	 
, �, � .
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Waves in Two Dimensions

• Wave equation: 

��	 =
σ
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• Boundary conditions (in this example):

	 0, �, � = 0 and 	 �� , �, � = 0

	 
, 0, � = 0 and 	 
, ��, � = 0
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Surface tension, �
Mass per unit area, �



Waves in Two Dimensions

	 0, �, � = 0 and 	 �� , �, � = 0

	 
, 0, � = 0 and 	 
, ��, � = 0

• Proposed solution:
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• We might anticipate that #���� = 0, depending on the initial 

conditions, or just set it to zero if we are mainly interested in 

steady state behavior or general properties of the solution.

• In this case:

	 
, �, � = ����� sin
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Waves in Two Dimensions

	 
, �, � = ����� sin
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• Derivatives:
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Waves in Two Dimensions

• Substitute into the wave equation:
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• Frequencies of normal modes:
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Waves in Two Dimensions

• We did the same thing with circular waves:
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• In polar coordinates:
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• If the waves are rotationally symmetric (they 

don’t have to be) then:
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Waves in Two Dimensions

• As usual, we can assume that the solution might factor:

	 ), � = +()) cos !�
• Then,
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• For convenience, we changed variables: , = -) = )! �⁄
• As in the rectangular case, we might expect that 
� = �/�
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Waves in Two Dimensions

• We recognized that this was Bessel’s equation which 
has solutions 01(-)) and 21 -) which can’t be 
written exactly in terms of more familiar analytic 
functions.

• But, to a very good approximation, we can write:

01(-)) ≈ 2/�
cos -) − �/4

-)

21(-)) ≈ 2/�
sin -) − �/4

-)
when -) ≫ 1.



Waves in Two Dimensions

• Boundary conditions: if / -) = 0 when ) = 7 and 

/(-)) remains finite when ) → 0 then solutions are 

of the form / -) = 01(-)) and

01 -7 ≈ 2 �⁄
cos -7 −

�
4
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• - must satisfy:
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Waves in Two Dimensions

• What if the solutions were not rotationally symmetric?

• We could try to look for solutions of the form

	 ), *, � = /())@(*) cos !�

• The function @(*) doesn’t really have a boundary, but it 
must be periodic:

@ * = @(* + 2�)

• A natural choice would be

@ * = C cosB* + C sinB*

• Then
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Waves in Two Dimensions

• When @ * = C cosB* + C sinB*, the differential 

equation becomes:
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• Convenient change of variables: , = -) = )!/�
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• This isn’t quite what we had before unless B = 0.



Waves in Two Dimensions
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• Now the solutions are the more general Bessel 

functions: 0D(-)) and 2D(-)).

• For this course it is sufficient to recognize that these 

are the solutions…  that’s all.

• You can look up their properties (eg. roots) or find 

computer libraries to calculate them if you ever need 

to.



Example

https://www.youtube.com/watch?v=v4ELxKKT5Rw



Waves in Three Dimensions

• In spherical coordinates (), *, E) the Laplacian is:
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• When /()F, �) is independent of * and E then the 

second line is zero.

• This time, let / ), � =
G(H)

H
cos!�

• Time derivative: 
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Waves in Three Dimensions

• Let / ), � =
G(H)

H
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• We know the solution to this differential equation:

+ ) = L;MNH

• The solution to the wave equation is

/ ), � = L
;MNH

)
cos!�



Waves in Three Dimensions

• Or we could write

/ ), � � L
cos -%) ∓ ��&

)
• Waves carry energy proportional 

to amplitude squared: ∝ 1/)�

• The energy is spread out over a 

surface with area 4�)�

• Energy is conserved

• Looks like a plane wave at large )


