PURDUE D) EpaRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 21 — French, Chapter 8
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Midterm Exam:

Date: Thursday, March 12th
Time: 3:00 —10:00 pm
Room: PHYS 112

Material: French, chapters 1-8



Electrical Impedance

e Reflection coefficient:

7'—7
P=7 17
* Transmission coefficient:
27"
‘T 71z

e Limiting cases to remember:
— Opencircuit: p =1, 7 =2
— Shortcircuit: p=—-1,7=0
— Matched, Z' =Z:p = 0,7 = 1.



Drivers/Receivers

* Now we can model the entire cable:

L / Z,
CRn Gy 2%’
e Current from the source: Iy —Z

I Pz ¥z
A VA

* Voltage at the left end of the cable:

7
Vi=V—1Z,=V
‘ > Z.+ 7




Low Frequency Limiting Cases

e What if there was no cable?

R

* No current flows through the open circuit so
we measure AV = V for any voltage source.

e What if a short cable was attached?




Limiting Cases

* Matched source and cable impedance: 7. —7

7, [ P =7 17
W AVL 7 e,

e Voltage from the source:

Vi=V—-1Z,=V £ 7
L S Zo+Z 2

* Reflected signalis V. = V; because p = 1

* Measured voltage is AV = 1,. + V; = V as before.

* Assumes that the pulse is much longer than the
electrical length of the cable.



Low Frequency Limiting Cases

e What if the source was shorted:
L

& o=

* The electric potential is the same everywhere
in a conductor.

* The electric potential difference across a wire
IS zero.

e What if a short cable was attached?



Limiting Cases

* Matched source and cable impedance: 7, —7

Z. ) P=7. %2
W AVL 7 e,

e Voltage from the source:

=—1

Vi=V—-1Z,=V £ 7
L S Zo+Z 2

* Reflected signal is V. = —V/; because p = —1

* Measured voltage is AV = l. + V; = 0 as before.

* Assuming that the pulse is much longer than the
electrical length of the cable.



Real Transmission Lines

* |n addition to reflections from mismatched
impedance, real transmission lines also
attenuate signals over large distances.

 What properties of the transmission line
determine how energy is lost as the wave
propagates?



Electrical Circuits

T R'dx L'dx C'dx T
V(x) —— V(x+dx)
l G dx l
0%V = XYV

axz o (x)

V(x,t) =V(x)ewt
XY =R +iowl)(G +iwC")
Suppose we try a solution of the form V(x) = e V*?



Propagation Constant

e Assume that a solution is of the form
V(x,t) = e'@t—r>
04V

—— = 2V = (R +iwl)(G' + iwC")V

 The propagation constant is
Yy = i\/(R’ + iwl)(G' + iwC’)
* How do we take the square root of a complex number?
—z=re¥ >z =re?/?
—Vz=a+if 2> z=(a? - p?) + 2iaf




Propagation Constant

* |Ingeneral, G' = 0 is a good approximation.
v? = (R +iwl)(iwC")
= —w?L'C' +iwR'C’
= (a? — B?%) + 2iaf
~ —B% + 2iaf
« Whena <,
f=wVLC =w/v

_WR'C_1,[C_R
“T T2 20 U 2z




Attenuation in Transmission Lines

V(x,t) = Ae'@wt—rx

 Wave propagating in the +x direction:
V(x, t) — Aei(wt—kx)e—ax
 Wave propagating in the —x direction:
V(x, t) — Aei(wt+kx)e+ax
* Example:
Z =50Q,R"=0.015Q/ft,L = 300 ft
e” % =095



Examples



Waves in Three Dimensions

Wave equation in one dimension:

0’y 1 0%

0x2  v2 0t?
The solution, y(x, t), describes the shape of a string
as a function of x and t.

This is a transverse wave: the displacement is
perpendicular to the direction of propagation.

This would confuse the following discussion...

Instead, let’s now consider longitudinal waves, like
the pressure waves due to the propagation of sound
In a gas.




Waves in Three Dimensions

Wave equation in one dimension:

0%p 1 0%p

0x2 2 0t?
The solution, p(x, t), describes the excess pressure
in the gas as a function of x and ¢.

What if the wave was propagating in the y-direction?

d%p 1 0%p
dy?2 ~ v2 9t2

What if the wave was propagating in the z-direction?
d%p 1 0°%p

0z2 2 9t2



Waves in Three Dimensions

The excess pressure is how a function of X and t.

Wave equation in three dimensions:
ik ik 0% 1 0%
p 9%p 0°p_10%
0x* 0y? 0z? v?0t?
But we like to write it this way:
1 0%p
Vip = ——
P =252
Where 72 is called the “Laplacian operator”, but you
just need to think of it as a bunch of derivatives:
0% 0% 0%
+—+—
0x* 0dy? 0z?

VZ




Waves in Three Dimensions

Wave equation in three dimensions:

\72p — i@
v? 0t?
How do we solve this? Here’s how... a8
p(E,t) = poe'-4) &
One partial derivatives: /
dop - Jd -
P lpoe‘(kx “)t) (k X — wt)

= ipyel(K%- “’t) (k x+kyy+kzz—a)t)

lkxp(x t)

Second derivative:

0°p N
v —kz p(%,1)



Waves in Two and Three Dimensions

 Wave equation in three dimensions:

1 0%p
Vip =
P v2 0t?
e Second derivatives:
0°p ,
W — _kazc p(x' t)
2
p S
a—yz — —k:}z, p(x, t)
°p
5,7 —kZ p(X,t)
02
7 =~ pE,0)



Waves in Two and Three Dimensions

Wave equation in three dimensions:
1 0%p

VZp =
P V2 Ot2

2

- W -
(k2 + K3+ k)p(E,0) = ——p(& 1)

Any values of k,, k,, k, satisfy the equation,
provided that

a)=v\/k,%+k32,+k§:v|E|

If ky, = k, = 0 then p(x,t) = poe Kx¥=®t) byt this
described a wave propagating in the +x direction.



Waves in Three Dimensions
p(%,t) = poe'(F#-00)
* The vector, E, points in the direction of propagation

* The wavelengthis A = 27‘[/‘1_()‘
e How do we visualize this solution?

— Pressure is equal at all points X such that k - ¥ — wt = ¢
where ¢ is some constant phase.

— Let %' be some other point such that k - ' — wt = ¢
— We can write X' = % + 2 and this tells us that k - % = 0.
— kand i are perpendicular.

— All points in the plane perpendicular to k have the same
phase.



Waves in Three Dimensions

e As usual, we are mainly
interested in the real
component:

Y@, t)=A cos(l_g - X — wt)

* A wave propagating in the
opposite direction would be
described by

Y'(F,t) = A’ COS(I_() - X + wt)
 The points in a plane with a

common phase is called the
“wavefront”.




Waves in Three Dimensions

Y(r,t)=A COS(I_c) - X F wt)
Sometimes we are free to pick a coordinate system in
which to describe the wave motion.

If we choose the x-axis to be in the direction of
propagation, we get back the one-dimensional
solution we are familiar with:

Y(r,t) = Acos(kx + wt)

But in one-dimension we saw that any function that
satisfied f (x + vt) was a solution to the wave
equation.

What is the corresponding function in three
dimensions?



Waves in Three Dimensions

a)=v\/k,%+k32,+k§:v|E|

* General solution to the wave equation are functions
that are twice-differentiable of the form:

Y@, t) = Cf (k-7 —vt) + Cog(k - 7 + vt)
where k = E/‘E‘
e Just like in the one-dimensional case, these do not
have to be harmonic functions.



Example

e Is the function Y (%,t) = (ax + bt + ¢)? a solution
to the wave equation?

* |t should be because we can write it as
Y&, t) = (a(x + vt) + ¢)?
where v = b/a which is of the form g(x + vt)
 We can check explicitly:

oY oY

§=2a(ax+bt+c) §=2b(ax+bt+c)
%Y _ 5 2 Y _ 52
axz_za axz_Zb

22y 0%y 9% 1 0%Y
= 2 _ 2 2 —
%7 T 37 97 = o B) 242 =2b%/v? EE) v=b/a



Example

e |Is the function Y (%,t) = ax~* + bt, where
a > 0,b > 0, a solution to the wave equation?

e |tis twice differentiable...

0*y _ 6a

0x2  x* ot?

e Butitis not a solution:

2
v _

% N 0% N 0%y 10%Y 6a
d0x2  dy?  0z2 w2 0t? x4

— Only true if a = 0, which we already said was not the case.

* This is not a solution to the wave equation.



