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Electrical Impedance

• Reflection coefficient:

� =
�� − �

�� + �
• Transmission coefficient:

� =
2��

�� + �
• Limiting cases to remember:

– Open circuit: � = 1, � = 2

– Short circuit: � = −1, � = 0

– Matched, �� = �: � = 0, � = 1.



Drivers/Receivers

• Now we can model the entire cable:

• Current from the source:

� =



�� + �
• Voltage at the left end of the cable:
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Low Frequency Limiting Cases

• What if there was no cable?

• No current flows through the open circuit so 

we measure ∆
 = 
 for any voltage source.

• What if a short cable was attached?
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Limiting Cases

• Matched source and cable impedance:

• Voltage from the source:


� = 
 − �	�� = 

�

�� + �
=
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• Reflected signal is 
� = 
� because � = 1

• Measured voltage is ∆
 = 
� + 
� = 
 as before.

• Assumes that the pulse is much longer than the 

electrical length of the cable.
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Low Frequency Limiting Cases

• What if the source was shorted:

• The electric potential is the same everywhere 

in a conductor.

• The electric potential difference across a wire 

is zero.

• What if a short cable was attached?
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Limiting Cases

• Matched source and cable impedance:

• Voltage from the source:
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 − �	�� = 

�

�� + �
=




2

• Reflected signal is 
� = −
� because � = −1

• Measured voltage is ∆
 = 
� + 
� = 0 as before.

• Assuming that the pulse is much longer than the 

electrical length of the cable.
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Real Transmission Lines

• In addition to reflections from mismatched 

impedance, real transmission lines also 

attenuate signals over large distances.

• What properties of the transmission line 

determine how energy is lost as the wave 

propagates?



Electrical Circuits

��
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= ��	
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 �, � = 
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Suppose we try a solution of the form 
 � = �%&'?
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Propagation Constant

• Assume that a solution is of the form


 �, � = ����%&'

��


���
= /�
 = �� +  !"� #� +  !$� 


• The propagation constant is

/ = ± �� +  !"� #� +  !$�

• How do we take the square root of a complex number?

– 1 = 2	��3
� 1 = 2��3/�

– 1 = 5 +  6 � 1 = 5� − 6� + 2 56



Propagation Constant

• In general, #� = 0 is a good approximation.

/� = �� +  !"�  !$�

= −!�"�$� +  !��$′
= 5� − 6� + 2 56

≈ −6� + 2 56
• When 5 ≪ 6,

6 = ! "�$′ = !/9

5 =
!��$�

26
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• Where as before we are using 9 =
:

;<=<
and � =

;<

=<.



Attenuation in Transmission Lines


 �, � = >����%&'

/ = 5 +  6 =
��

2�
±  !/9

• Wave propagating in the +x direction:


 �, � = >��(��%?')�%@'

• Wave propagating in the –x direction:


 �, � = >��(��A?')�A@'

• Example:

� = 50	Ω, �� = 0.015 Ω ft⁄ , " = 300	ft
e%J; = 0.95	



Examples



Waves in Three Dimensions

• Wave equation in one dimension:

��L

���
=

1
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��L

���

• The solution, L(�, �), describes the shape of a string 

as a function of � and �.

• This is a transverse wave: the displacement is 

perpendicular to the direction of propagation.

• This would confuse the following discussion…

• Instead, let’s now consider longitudinal waves, like 

the pressure waves due to the propagation of sound 

in a gas.



Waves in Three Dimensions

• Wave equation in one dimension:

��M
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1
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• The solution, M(�, �), describes the excess pressure 

in the gas as a function of � and �.

• What if the wave was propagating in the L-direction?
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• What if the wave was propagating in the 1-direction?
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Waves in Three Dimensions

• The excess pressure is now a function of �N and �.

• Wave equation in three dimensions:
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• But we like to write it this way:

O�M =
1

9�

��M

���

• Where O� is called the “Laplacian operator”, but you 

just need to think of it as a bunch of derivatives:

O� ≡
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+
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�L�
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Waves in Three Dimensions
• Wave equation in three dimensions:

O�M =
1

9�

��M

���

• How do we solve this?  Here’s how…

M �N, � = MQ�� ?∙'N%��

• One partial derivatives:

�M

��
=  MQ�� ?∙'N%��

�

��
S ∙ �N − !�

=  MQ�� ?∙'N%��
�

��
S'� + STL + SU1 − !�

=  S'M �N, �
• Second derivative:

��M

���
= −S'

�	M(�N, �)



Waves in Two and Three Dimensions

• Wave equation in three dimensions:

O�M =
1

9�

��M

���

• Second derivatives:
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Waves in Two and Three Dimensions

• Wave equation in three dimensions:

O�M =
1

9�

��M

���

− S'
� + ST

� + SU
� M �N, � = −

!�

9�
M(�N, �)

• Any values of S', ST, SU		satisfy the equation, 

provided that

! = 9 S'
� + ST

� + SU
� = 9 S

• If ST = SU = 0 then M �N, � = MQ�� ?V'%�� but this 

described a wave propagating in the +� direction.



Waves in Three Dimensions

M �N, � = MQ�� ?∙'N%��

• The vector, S, points in the direction of propagation

• The wavelength is W = 2X/ S

• How do we visualize this solution?

– Pressure is equal at all points �N such that S ∙ �N − !� = Y
where Y is some constant phase.

– Let �N� be some other point such that S ∙ �N′ − !� = Y

– We can write �N� = �N + Z and this tells us that S ∙ Z = 0.

– S and Z are perpendicular.

– All points in the plane perpendicular to S have the same 
phase.



Waves in Three Dimensions

• As usual, we are mainly 

interested in the real 

component:

[ 2N, � = > cos S ∙ �N − !�

• A wave propagating in the 

opposite direction would be 

described by

[′ 2N, � = >′ cos S ∙ �N + !�

• The points in a plane with a 

common phase is called the 

“wavefront”.



Waves in Three Dimensions

[ 2N, � = > cos S ∙ �N ∓ !�

• Sometimes we are free to pick a coordinate system in 

which to describe the wave motion.

• If we choose the �-axis to be in the direction of 

propagation, we get back the one-dimensional 

solution we are familiar with:

[ 2N, � = > cos S� ∓ !�

• But in one-dimension we saw that any function that 

satisfied `(� ± 9�) was a solution to the wave 

equation.

• What is the corresponding function in three 

dimensions?



Waves in Three Dimensions

! = 9 S'
� + ST

� + SU
� = 9 S

• General solution to the wave equation are functions 

that are twice-differentiable of the form:

[ 2N, � = $:` Sa ∙ 2N − 9� + $�b Sa ∙ 2N + 9�

where Sa = S/ S

• Just like in the one-dimensional case, these do not 

have to be harmonic functions.



Example

• Is the function [ �N, � = c� + d� + e � a solution 

to the wave equation?

• It should be because we can write it as

[ �N, � = c(* + fg) + e �

where 9 = d/c which is of the form b(� + 9�)

• We can check explicitly:

hi

h'
= 2c c� + d� + e

hi

h'
= 2d c� + d� + e

hji

h'j = 2c� hji

h'j = 2d�
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��� 2c� = 2d�/9� 9 = d/c



Example

• Is the function [ �N, � = c�%� + d�, where 

c > 0, d > 0, a solution to the wave equation?

• It is twice differentiable…

hji

h'j =
lm

'n

hji

h�j = 0

• But it is not a solution:

– Only true if c = 0, which we already said was not the case.

• This is not a solution to the wave equation.
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