

Physics 42200 Waves & Oscillations

Lecture 16 – French, Chapter 6

Spring 2015 Semester

Matthew Jones

Summary

General solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \theta_k)$$

• Frequencies of normal modes of oscillation:

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

Fourier coefficients:

$$a_k \cos \theta_k = \frac{2}{N} \sum_{n=1}^N x_n(0) \sin \left(\frac{nk\pi}{N+1} \right)$$
$$a_k \omega_k \sin \theta_k = \frac{2}{N} \sum_{n=1}^N \dot{x}_n(0) \sin \left(\frac{nk\pi}{N+1} \right)$$

Summary

General solution:

$$y(x,t) = \sum_{k=1}^{\infty} a_k \sin\left(\frac{k\pi x}{L}\right) \cos(\omega_k t - \theta_k)$$

• Frequencies of normal modes of oscillation:

$$\omega_k = \frac{k\pi v}{L}$$

Fourier coefficients:

$$a_k \cos \theta_k = \frac{2}{L} \int_0^L y(x,0) \sin \left(\frac{k\pi x}{L}\right) dx$$

$$a_k \omega_k \sin \theta_k = \frac{2}{L} \int_0^L \dot{y}(x,0) \sin \left(\frac{k\pi x}{L}\right) dx$$

When a string is plucked in the middle, what sound will it make?

 This is a question about the amplitudes of the different normal modes of vibration.

$$y(x,t) = \sum_{k=1}^{\infty} a_k \sin\left(\frac{k\pi x}{L}\right) \cos(\omega_k t)$$
$$\omega_k = \frac{k\pi v}{L}$$
$$a_k = \frac{2}{L} \int_0^L y(x,0) \sin\left(\frac{k\pi x}{L}\right) dx$$

The initial shape of the string is the function:

$$f(x) = \begin{cases} 2Ax/L & when \ x < L/2 \\ 2A - 2Ax/L & when \ x > L/2 \end{cases}$$

Fourier coefficients:

$$a_k = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{k\pi x}{L}\right) dx$$

$$= \frac{2}{L} \int_0^{L/2} f(x) \sin\left(\frac{k\pi x}{L}\right) dx$$

$$+ \frac{2}{L} \int_{L/2}^L f(x) \sin\left(\frac{k\pi x}{L}\right) dx$$

We have only two kinds of integrals:

$$\int \sin\left(\frac{k\pi x}{L}\right) dx = -\frac{L}{k\pi} \cos\left(\frac{k\pi x}{L}\right)$$

$$\int x \sin\left(\frac{k\pi x}{L}\right) dx$$

$$= -\frac{L}{k\pi} \cos\left(\frac{k\pi x}{L}\right) + \frac{L^2}{k^2 \pi^2} \sin\left(\frac{k\pi x}{L}\right)$$

• It is often useful to use symmetries to simplify the amount of work:

Left and right integrals will cancel.

$$a_2 = a_4 = a_6 = \dots = 0$$

Left and right integrals are equal.

$$a_k = \frac{8A}{L^2} \int_0^{L/2} x \sin\left(\frac{k\pi x}{L}\right) dx$$

Use a table of integrals:

(91)
$$\int x \sin(ax) dx = -\frac{x}{a} \cos ax + \frac{1}{a^2} \sin ax$$

$$a_k = -\frac{4A}{k\pi} \cos\left(\frac{k\pi}{2}\right) + \frac{8A}{k^2\pi^2} \sin\left(\frac{k\pi}{2}\right)$$

• But we only care about k = 1,3,5,7...

$$a_k = \frac{8A}{\pi^2}, -\frac{8A}{9\pi^2}, \frac{8A}{25\pi^2}, -\frac{8A}{49\pi^2}, \dots$$

 These are the amplitudes of each frequency component:

• One end of the string is fixed, the other end is forced with the function $Y(t) = B \cos \omega t$.

$$y(0,t) = B \cos \omega t$$
$$y(L,t) = 0$$

 The wave equation still holds so we expect solutions to be of the form

$$y(x,t) = f(x) \cos \omega t$$

- This time we can't constrain f(x) to be zero at both ends.
- Now, let $f(x) = A \sin(kx + \alpha)$
 - The constant k is just ω/v .
 - We need to solve for A and α
- Boundary condition at x = L:

$$\sin\left(\frac{\omega L}{v} + \alpha\right) = 0 \implies \frac{\omega L}{v} + \alpha = p\pi$$

$$\alpha_p = p\pi - \frac{\omega L}{v}$$

• Condition at x = 0:

$$B = A_p \sin \alpha_p$$

• Amplitude of oscillations:

$$A_p = \frac{B}{\sin(p\pi - \omega L/v)}$$

- What does this mean?
 - The driving force can excite many normal modes of oscillation
 - When $\omega = p\pi v/L$, the amplitude gets very large

$$L = 5 m$$
$$v = 10 m/s$$

Other Continuous Systems

Longitudinal waves in a solid rod:

Notation:

- x labels which piece of the rod we are considering, analogous to the index n when counting discrete masses.
- η quantifies how much the element of mass has moved.
- Recall that strain was defined as the fractional increase in length of a small element: $\Delta \eta / \Delta x$
- Stress was defined as $\Delta F/A$
- These were related by $\Delta F/A = Y \Delta \eta/\Delta x$

Longitudinal Waves in a Solid Rod

Force on one side of the element:

$$F_1 = AY \Delta \eta / \Delta x = AY \partial \eta / \partial x$$

Force on the other side of the element:

$$F_2 = F_1 + AY \frac{\partial^2 \eta}{\partial x^2} \Delta x$$

Longitudinal Waves in a Solid Rod

Newton's law:

$$m\ddot{\eta} = F_2 - F_1$$

$$F_2 - F_1 = AY \frac{\partial^2 \eta}{\partial x^2} \Delta x = \rho A \Delta x \frac{\partial^2 \eta}{\partial t^2}$$

• Wave equation:

$$\frac{\partial^2 \eta}{\partial x^2} = \frac{\rho}{Y} \frac{\partial^2 \eta}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2}$$

What is the solution for a rod of length L?

$$\frac{\partial^2 \eta}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2} \qquad v = \sqrt{Y/\rho}$$

- Boundary conditions:
 - Suppose one end is fixed

$$\eta(0)=0$$

$$F = AY \partial \eta / \partial x$$
$$\frac{\partial \eta}{\partial x_{x=L}} = 0$$

Look for solutions that are of the form

$$\eta(x) = f(x)\cos\omega t$$

$$\eta(x) = f(x)\cos\omega t$$

- Inspired by the continuous string problem, we let $f(x) = A \sin(kx)$
- Derivatives:

$$\frac{\partial^2 \eta}{\partial x^2} = -k^2 \eta$$

$$\frac{\partial^2 \eta}{\partial t^2} = -\omega^2 \eta$$

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2} \Rightarrow k = \frac{\omega}{v}$$

$$f(x) = A \sin\left(\frac{\omega x}{v}\right)$$

- This automatically satisfies the boundary condition at x=0.
- At x = L, $\partial \eta / \partial x = 0$:

$$\frac{\partial \eta}{\partial x_{x=L}} \propto \cos\left(\frac{\omega L}{v}\right) = 0$$

- This means that $\frac{\omega L}{v} = (n \frac{1}{2})\pi$
- Angular frequencies of normal modes are

$$\omega_n = \frac{\pi}{L} (n - \frac{1}{2}) \sqrt{Y/\rho}$$

Frequencies of normal modes are

$$\nu_n = \frac{n - 1/2}{2L} \sqrt{Y/\rho}$$

Frequencies of normal modes are

$$\nu_n = \frac{n - 1/2}{2L} \sqrt{Y/\rho}$$

Lowest possible frequency:

$$\nu_1 = \frac{1}{4L} \sqrt{\frac{Y}{\rho}}$$

Frequencies of Metal Chimes

- Suppose a set of chimes were made of copper rods, with lengths between 30 and 40 cm, rigidly fixed at one end.
- What frequencies should we expect if

$$Y = 117 \times 10^9 \text{ N} \cdot m^{-2}$$

 $\rho = 8.96 \times 10^3 \text{ kg} \cdot m^{-3}$

$$\nu_1 = \frac{1}{4L} \sqrt{\frac{117 \times 10^9 \text{ N} \cdot m^{-2}}{8.96 \times 10^3 \text{ kg} \cdot m^{-3}}}$$
= 2260 - 3010 Hz
(highest octave on a piano)

Frequencies of Metal Chimes

 If the metal rods were not fixed at one end then the boundary conditions at both ends would be:

$$\frac{\partial \eta}{\partial x} = 0$$

Allowed frequencies of normal modes:

$$v_n = \frac{n}{2L} \sqrt{Y/\rho}$$
Harmonic Wavelength λ Frequency

Open at Both Ends
1st Harmonic
2nd Harmonic
3rd Harmonic
XX

Iarmonic	Wavelength λ	Frequency f
1 st	2L	f_1
2^{nd}	L	$2f_1$
$3^{\rm rd}$	2 <i>L</i> /3	$3f_1$