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Example
• When a string is plucked in the middle, what sound will it make?

• This is a question about the amplitudes of the different normal 
modes of vibration.
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Example

• The initial shape of the string is the function:
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• Fourier coefficients:
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Example

• We have only two kinds of integrals:
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Example

• It is often useful to use symmetries to simplify the 

amount of work:

Left and right integrals will cancel.

�3 = �4 = �5 = ⋯ = 0

Left and right integrals are equal.
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Example

• These are the amplitudes of each frequency 

component:
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The dominant frequency is 

just �� = 
$ !⁄ .

There are no even harmonics.



Forced Oscillations

• One end of the string is fixed, the other end is forced 
with the function > � = ? cos��.

� 0, � = ? cos��
� !, � = 0

• The wave equation still holds so we expect solutions to 
be of the form
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Forced Oscillations

• This time we can’t constrain )(�) to be zero at both 
ends.

• Now, let ) � = ( sin �� + @
– The constant � is just �/$.

– We need to solve for ( and @
• Boundary condition at � = !:

sin �!
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• Condition at � = 0:

? = (C sin @C



Forced Oscillations

• Amplitude of oscillations:

(C =	 ?
sin B
 − �!/$

• What does this mean?

– The driving force can excite many normal modes of 

oscillation

– When � = B
$/!, the amplitude gets very large



Forced Oscillations
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Other Continuous Systems

• Longitudinal waves in a solid rod:

• Recall that strain was defined as the fractional 

increase in length of a small element: ∆F ∆�⁄
• Stress was defined as ∆G/(
• These were related by ∆G (⁄ = > ∆F ∆�⁄
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Notation:

• � labels which piece of the 

rod we are considering, 

analogous to the index �
when counting discrete 

masses.

• F quantifies how much the 

element of mass has 

moved.



Longitudinal Waves in a Solid Rod

∆G (⁄ = > ∆F ∆�⁄
• Force on one side of the element:

G� = (> ∆F ∆�⁄ = (>HF/H�
• Force on the other side of the element:
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Longitudinal Waves in a Solid Rod

• Newton’s law:
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• Wave equation:
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Longitudinal Normal Modes

• What is the solution for a rod of length !?
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• Boundary conditions:

– Suppose one end is fixed

F 0 = 0
– No force at the free end of the rod so the stress is zero there.  

Strain ∝ stress, so the strain is also zero.

G = (>HF/H�
HF
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• Look for solutions that are of the form

F � = )(�) cos��



Longitudinal Normal Modes

F � = )(�) cos��
• Inspired by the continuous string problem, we let

) � = ( sin ��
• Derivatives:

H3F
H�3 = −�3F
H3F
H�3 = −�3F

H3F
'�3 =

1
$3
H3F
H�3 ⇒ � = �

$



Longitudinal Normal Modes

) � = ( sin ��
$

• This automatically satisfies the boundary condition at � = 0.
• At � = !, HF H�⁄ = 0:
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• Angular frequencies of normal modes are
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• Frequencies of normal modes are
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Longitudinal Normal Modes

• Frequencies of normal modes are

V� = � − 1/2
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Lowest possible frequency:
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Frequencies of Metal Chimes

30 

cm 40 

cm

• Suppose a set of chimes were made of copper rods, 
with lengths between 30 and 40 cm, rigidly fixed at 
one end.

• What frequencies should we expect if
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(highest octave on a piano)



Frequencies of Metal Chimes

• If the metal rods were not fixed at one end then the 

boundary conditions at both ends would be:

HF
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= 0

• Allowed frequencies of normal modes:
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