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Vibrations of Continuous Systems

• Equations of motion for masses in the middle:

�	��� + 2��� 	− � ��
� + ���� = 0
��� + 2 �� ��� − �� � ��
� + ���� = 0

• Proposed solution:

�� � = �� cos��
��
� + ����

�� = −�
� + 2 �� �

�� �
• We solved this to determine �� and ��…

� � � �



• Amplitude of mass � for normal mode �:

��,� = � sin
���
 + 1

• Frequency of normal mode �:

�� = 2�� sin
��

2  + 1
• Solution for normal modes:

"�,� � = ��,� cos���
• General solution:

�� � = #$� sin
���
 + 1

%

�&�
cos ��� − '�

Vibrations of Continuous Systems



Another Example

• Discrete masses on an elastic string with tension (:

• Consider transverse displacements:

• Vertical force on one mass:

(
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Another Example

• Equation of motion for mass �:

�	+�� = )� =
(
ℓ +��� − +� − +� − +�
�

+�� + 2 �� �+� − �� � +��� + +�
� = 0
�� � = (

�ℓ
• Normal modes:

+�,� � = ��,� cos ��� − '�

+�



Example

• Solutions are of the form

�� � = #$� sin
���
 + 1

%

�&�
cos ��� − '�

• The constants $� and '� must be chosen to satisfy the 

initial conditions.

• Consider, for example, an initial state where all masses 

are in their equilibrium position except for the mass at ��
which is initially displaced by a distance �…

� � � �



Example

• Consider, for example, an initial state where all masses are in their 
equilibrium position except for the mass at �� which is initially displaced 
by a distance �…

�� 0 = #$� sin
��
 + 1 cos '�
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Example

• We have 2 equations

– initial positions of  masses

– initial velocities of  masses

• We have 2 unknowns: $� and '�
• How do we solve this linear system of equations?

• Properties of the normal modes:

– Eigenvalues:  �� = 2�� sin �/
� %��

– Eigenvectors: ��,� = sin ��/
%��

• Eigenvectors are orthogonal:

0 ��,��1,�%
�&� = 0 when � ≠ �



Discrete Sine Transform

• The eigenvectors are orthogonal so it must be true 

that

#sin ���
 + 1 sin ���

 + 1
%

�&�
= 0

when � ≠ �.

• When � = � we just have

#sin� ���
 + 1

%

�&�
= #1

2 1 + cos 2���
 + 1

%

�&�
=  2

This term sums 

to zero…



Discrete Sine Transform

• We can summarize this in a useful form:

#sin ���
 + 1 sin ���

 + 1
%

�&�
=  2 	3�1

• The symbol 3�1 is called the Kronecker Delta:

3�1 = 40			when	� ≠ �1			when	� = �
• How will this help us solve for the constants of 

integration, given the initial conditions?



Example

• General solution:

�� � = #$� sin
���
 + 1

%

�&�
cos ��� − '�

• At time � = 0,

�� 0 = #$� sin
���
 + 1

%

�&�
cos '�

• Consider the expression:

#�� 0
%

�&�
sin ��′�

 + 1 = # $� cos '� sin
��′�
 + 1 sin ���

 + 1
%

�,�&�

=  2 #$� cos '�
%

�&�
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2 $�: cos '�9



Example

• Likewise, consider the time derivatives:

�.� � = −#$��� sin
���
 + 1

%

�&�
sin ��� − '�

�.� 0 = #$���
%

�&�
sin '� sin

���
 + 1

#�.�(0)
%

�&�
sin ��′�

 + 1 =  2 $�:��9 sin '�9
• If the initial velocities were all zero, then 

'� = 0 for � = 1,… , 

constants



Example

• Now we know that '� are all zero…

#�� 0
%

�&�
sin ��′�

 + 1 =  2 $�9

$� =
2
 #�� 0

%

�&�
sin ���

 + 1
• In this example, �� 0 = �, ��=� 0 = 0
• Therefore,

$� =
2�
 sin ��

 + 1
And we’re done!



A slightly different example…

• Instead of the mass at one end being initially 
displaced, suppose it was the mass in the middle.  
In this case,

$� =
2�
 sin ( 2⁄ )��

 + 1
�� = 2�� sin

��
2  + 1

�� � = #$� sin
���
 + 1

%

�&�
cos ���



Example with N=20



Example with N=50



Review

• We calculated the eigenvalues for a system with  
identical masses

�� = 2�� sin
��

2  + 1
• We found the normal modes of vibration (eigenvectors):

��,� = sin
���
 + 1

• The general form of the solution is

�� � = #$� sin
���
 + 1

%

�&�
cos ��� − '�



Review

• We determined the constants of integration from the 

initial conditions:

$� cos '� =
2
 #�� 0

%

�&�
sin ���

 + 1

$� sin '� =
2
 ��#�.�(0)

%

�&�
sin ���

 + 1
• Put these back into the general form of the solution:

�� � = #$� sin
���
 + 1

%

�&�
cos ��� − '�

And we’re done…



Masses on a String

First normal mode

Second normal mode



Continuous Systems

• What happens when the number of masses goes to 
infinity, while the linear mass density remains constant?

�	+�� =
(
ℓ +��� − +� − +� − +�
�

�
ℓ → @
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AB
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EF F�∆F
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ABHD
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Continuous Systems

@ I
�+
I�� = (

I+
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I� F
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1
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The Wave Equation: J = (/@



Solutions

• When we had  masses, the solutions were

+�,� � = ��,� cos ��� − 3�
– � labels the mass along the string

– With a continuous system, � is replaced by �.

• Proposed solution to the wave equation for the 

continuous string:

+ �, � = L(�) cos��
• Derivatives:

I�+
I�� = −�

�L(�) cos��
I�+
I�� =

I�L
I�� cos��



Solutions

• Substitute into the wave equation:

I�+
I�� =

1
J�
I�+
I��

I�L
I�� = −

��
J� L(�)

I�L
I�� +

��
J� L � = 0

• This is the same differential equation as for the 

harmonic oscillator.

• Solutions are L � = � sin ��/J + M cos ��/J



Solutions

L � = � sin ��/J + M cos ��/J
• Boundary conditions at the ends of the string: 

L 0 = L N = 0
L � = � sin ��/J where �N J⁄ = ��

• Solutions can be written:

L� � = �� sin
���
N

• Complete solution describing the motion of the 

whole string:

+� �, � = �� sin
���
N cos���



Properties of the Solutions

+� �, � = �� sin
���
N cos���

O� =
2N
�

�� =
��J
N

L� =
�J
2N



Forced Oscillations

• One end of the string is fixed, the other end is forced 
with the function P � = M cos��.

+ 0, � = M cos��
+ N, � = 0

• The wave equation still holds so we expect solutions to 
be of the form

+ �, � = L(�) cos��



Forced Oscillations

• This time we can’t constrain L(�) to be zero at both 
ends.

• Now, let L � = � sin �� + Q
– The constant � is just �/J.

– We need to solve for � and Q
• Boundary condition at � = N:

sin �N
J + Q = 0		 ⇒ 			�NJ + Q = S�

QT = S� −
�N
J

• Condition at � = 0:

M = �T sin QT



Forced Oscillations

• Amplitude of oscillations:

�T =	
M

sin S� − �N/J
• What does this mean?

– The driving force can excite many normal modes of 

oscillation

– When � = S�J/N, the amplitude gets very large



Forced Oscillations

S = 1 S = 2

L = �/2� L = �/2�

�/
M

�/
M

N = 5	�
J = 10	�/V


