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Comments on the Assignment

• Question 1 – Primarily concerned with the 

case when � ≪ � (weak damping).

– In this case � ≈ �� and the total energy changes 

much more slowly than the position, � � .
• Question 2 – A graph will help a lot…
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Forced Oscillators and Resonance
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• Amplitude of steady-state oscillations:
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Resonance Phenomena

• Change of variables:
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Strong damping force � large �
Strong damping force � small &



Resonance Phenomena

• Steady state amplitude:
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Peak is near � ��⁄ ≈ 1.	 The peak occurs at exactly � �����⁄ = 1.
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Average Power

• The rate at which the oscillator absorbs energy is:
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Full-Width-at-Half-Max:
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Examples

• Resonant RLC circuit:
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The transformer does not play a role in the analysis of the circuit.  It is just 

a convenient way to isolate the driving voltage source from the part of the 

circuit that oscillates.
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Resonant Circuit
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• Differentiate once:
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• Redefine what we man by “� = 0”:
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• Change of variables:
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Resonant Circuit
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• Amplitude of steady state current oscillations:
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• Voltage across the capacitor:
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• Amplitude of voltage oscillations measured across C:
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Actual Data

• If we know that 7 = 235	A/, can we estimate : and ;?

B = �/2C
[Mhz]
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e 7 = 235	A/ Peak voltage is at

BD�EF = 290	�/H
�D�EF = 2C BD�EF



Energy 

• Energy stored on a capacitor is I = %
�;	�

• The graph of the stored energy is proportional to the 

square of the voltage graph.

• If we defined 2∆� as the FWHM on the graph of 

power vs frequency, then it will correspond to 1/ 2
of the peak voltage.



Resonant Circuit

B = �/2C [Mhz]
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7 = 235	A/ 2∆B = 110	�/H
� = 2C ∆B = 6.91 × 10M	N$%

But � = :/7 so we can find ::

: = �7 = 6.91 × 10M	N$% 235	A/
= 162	Ω
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Lifetime of Oscillations

• Amplitude of a damped harmonic oscillator:

� � = �	[$Q=/� cos��
• Maximum potential energy:

\ = 1
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• After time � = 1/�, the energy is reduced by the 

factor 1/[.

• We call ^ = 1/� the “lifetime” of the oscillator. 



Other Resonant Systems



Other Resonant Systems



Other Resonant Systems



Wire Bond Resonance

• Wire bonds in a magnetic field:

_

`

Lorentz force is �a = b c 8ℓ × e
The tiny wire is like a spring.

A periodic current produces 

the driving force. 
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Wire Bond Resonance



Resonance in Nuclear Physics

• A proton accelerated through a potential 

difference 	 gains kinetic energy g = [	:

	

i
Phys. Rev. 75, 246 (1949).



Resonance in Nuclear Physics

• In quantum mechanics, energy and frequency 

are proportional:

I = ℏ�
• A given energy corresponds to a driving force 

with frequency �.

• When a nucleus resonates at this frequency, 

the proton energy is easily absorbed.



Nuclear Resonance

“Lifetime” is 

defined in terms of 

the width of the 

resonance.



Resonance

• Resonances are the main way we observe fundamental 
particles.


