

Physics 42200 Waves & Oscillations

Lecture 7 – French, Chapter 4

Spring 2014 Semester

Matthew Jones

Forced Oscillations and Resonance

This is why you should pay attention.

Simple Harmonic Motion

$$m\ddot{x} + b\dot{x} + kx = 0$$

$$\sum_{i=0}^{\infty} L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i(t) = 0$$

Second-order, homogeneous, linear differential equations with constant coefficients.

Forced Harmonic Motion

Homogeneous equation:

$$m\ddot{x} + b\dot{x} + kx = 0$$

Solutions are, for example,

$$mx + bx + kx = 0$$
utions are, for example,
$$x(t) = Ae^{-\frac{\gamma}{2}t} \sin \omega_0 t + Be^{-\frac{\gamma}{2}t} \cos \omega_0 t$$

Non-homogeneous equation:

$$m\ddot{x} + b\dot{x} + kx = F(t)$$

- There is an additional time-dependent force that does not depend on x.
- Periodic forcing: $F(t) = F_0 \cos \omega t$ where ω and F_{Ω} are the frequency and amplitude of the applied force.

We are talking about two frequencies:

$$\omega_0 = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$
 is the natural frequency

of oscillations with no external force

 ω is the frequency of the applied for force and is independent of k, m, b.

• What will the solution, x(t), look like?

- For short times, the initial conditions might influence the motion, but this dies away because of the $e^{-\gamma t/2}$ terms (transient motion).
- For longer times, after the transient behavior has died out, the system undergoes "steady-state" motion which should continue indefinitely.
- What is the form of the "steady-state" solution?
- Two scenarios:

$$\omega \ll \omega_0$$

$$\omega \gg \omega_0$$

- When $\omega \ll \omega_0$, the motion has the same frequency and phase as the driving force.
- When $\omega \gg \omega_0$, the motion has the same frequency but is 180° out of phase.
- Maybe the form of the steady-state solution should look something like

$$x(t) = \mathbf{A}\cos(\boldsymbol{\omega}t + \boldsymbol{\varphi})$$

- We have to solve for \boldsymbol{A} and $\boldsymbol{\varphi}$.
- These are *not* determined from the initial conditions... this solution only describes the motion for $\gamma t/2 \gg 1$.

Consider the simpler equation (no viscous damping):

$$m\ddot{x} + kx = F_0 \cos \omega t$$
$$\ddot{x} + (\omega_0)^2 x = \frac{F_0}{m} \cos \omega t$$

Proposed solution when $\omega \ll \omega_0$:

$$x(t) = A \cos \omega t$$

What value of A will satisfy the differential equation?

$$\dot{x}(t) = -\mathbf{A}\omega \sin \omega t$$
$$\dot{x}(t) = -\mathbf{A}\omega^2 \cos \omega t$$

Substitute into the equation:

$$(-\omega^2 + (\omega_0)^2) \mathbf{A} \cos \omega t = \frac{F_0}{m} \cos \omega t$$
$$\mathbf{A} = \frac{F_0/m}{(\omega_0)^2 - \omega^2}$$

Consider the simpler equation (no viscous damping):

$$m\ddot{x} + kx = F_0 \cos \omega t$$
$$\ddot{x} + (\omega_0)^2 x = \frac{F_0}{m} \cos \omega t$$

• Proposed solution when $\omega \gg \omega_0$:

$$x(t) = A \cos(\omega t + \pi) = -A \cos \omega t$$

What value of A will satisfy the differential equation?

$$\dot{x}(t) = \mathbf{A}\omega \sin \omega t$$
$$\ddot{x}(t) = \mathbf{A}\omega^2 \cos \omega t$$

Substitute into the equation:

$$(\omega^2 - (\omega_0)^2) \mathbf{A} \cos \omega t = \frac{F_0}{m} \cos \omega t$$
$$\mathbf{A} = \frac{F_0/m}{\omega^2 - (\omega_0)^2}$$

In both cases, the solution is of the form

$$x(t) = A\cos(\omega t + \varphi)$$

$$\varphi = \begin{cases} 0 \text{ when } \omega \ll \omega_0 \\ \pi \text{ when } \omega \gg \omega_0 \end{cases}$$
$$A = \frac{F_0/m}{|\omega^2 - (\omega_0)^2|}$$

- What happens when $\omega \approx \omega_0$?
 - Probably nothing good: $A \rightarrow \infty$ which is unphysical.

Amplitude gets very large when the frequency of the driving force is close to the natural oscillation frequency.

- Let's derive the form of the solution without any assumptions about ω .
- Assume x(t) is of the form

$$x(t) = Ae^{i(\omega t - \delta)} = Ae^{-i\delta}e^{i\omega t}$$

Just a constant

Derivatives:

$$\dot{x}(t) = i\omega x(t)$$
$$\ddot{x}(t) = -\omega^2 x(t)$$

Substitute into the differential equation:

$$\ddot{m}x + b\dot{x} + kx = F_0 e^{i\omega t}$$

Rewrite the differential equation slightly:

$$\ddot{x} + \gamma \dot{x} + (\omega_0)^2 x = \frac{F_0}{m} e^{i\omega t}$$

Substitute in the solution:

$$\left[(-\omega^2 + i\omega\gamma + (\omega_0)^2)Ae^{-i\delta} \right]e^{i\omega t} = \frac{F_0}{m}e^{i\omega t}$$

True for any t provided that

$$A = \frac{e^{i\delta} F_0/m}{(\omega_0)^2 - \omega^2 + i\omega\gamma} = \frac{\left((\omega_0)^2 - \omega^2 - i\omega\gamma\right)e^{i\delta} F_0/m}{\left((\omega_0)^2 - \omega^2\right)^2 + (\omega\gamma)^2}$$

 We said that A was a real number... its magnitude is

$$A = \frac{F_0/m}{\sqrt{\left((\omega_0)^2 - \omega^2\right)^2 + (\omega\gamma)^2}}$$

• The phase, δ , must be

$$\delta = \tan^{-1} \left(\frac{\omega \gamma}{(\omega_0)^2 - \omega^2} \right)$$

Is this consistent with the expected limits?

Limiting Behavior

• When $\omega \ll \omega_0$ then $\left((\omega_0)^2 - \omega^2\right)^2 \gg (\omega\gamma)^2$ $A \to \frac{F_0/m}{(\omega_0)^2 - \omega^2}$ $\delta = \tan^{-1}(\text{"small, positive"}) \to 0$

• When
$$\omega \gg \omega_0$$
 then $\left((\omega_0)^2 - \omega^2\right)^2 \gg (\omega \gamma)^2$
$$A \to \frac{F_0/m}{\omega^2 - (\omega_0)^2}$$

$$\delta = \tan^{-1}(\text{"small,negative"}) \to \pi$$

• When $\omega \to 0$ then $A \to F_0/k$.

Resonance

- The peak occurs at a frequency that is close to, but not exactly equal to ω_0 .
- At resonance, the phase shift is $\delta = \pi/2$.
- The force pushes the mass in the direction it is already moving adding energy to the system.

Example

