PURDUE
 Department of $\mathrm{P}_{\text {hysics }}$

Physics 42200 Waves \& Oscillations

Lecture 38 - Fresnel Diffraction

Spring 2014 Semester

Fraunhofer Diffraction

Fraunhofer diffraction:

- The phase varies linearly across the aperture
- The intensity of light arriving from each part of the aperture is equal

$$
d E=\frac{\varepsilon_{L} e^{i k y \sin \theta} d y}{R}
$$

Fraunhofer Diffraction

Fraunhofer diffraction:

- The phase varies linearly across the aperture
- The intensity of light arriving from each part of the aperture is equal

$$
d E=\frac{\varepsilon_{L} e^{i k y\left(\sin \theta-\sin \theta_{i}\right)} d y}{R}
$$

Huygens-Fresnel Principle

- Each point on a wave front is a source of spherical waves that are in phase with the incident wave.
- The light at any point in the direction of propagation is the sum of all such spherical waves, taking into account their relative phases and path lengths.
- The secondary spherical waves are preferentially emitted in the forward direction.
- Fresnel presented a very different way of thinking about the propagation and diffraction of light.
- The details might be the subject of extensive debate
- It relies completely on the wave nature of light
- The predictions were confirmed by experiment

Huygens-Fresnel Principle

Huygens-Fresnel Principle

Propagation of Spherical Waves

- Consider a spherical wave emitted from a source S at time $t=0$.

$$
E\left(\rho, t^{\prime}\right)=\frac{\varepsilon_{0}}{\rho} \cos \left(\omega t^{\prime}-k \rho\right)
$$

- These spherical waves expand outward from S

Propagation of Spherical Waves

- Consider a series of concentric spheres around another point P with radii $r_{0}, r_{0}+\lambda / 2, r_{0}+\lambda, \cdots$

Propagation of Spherical Waves

- Consider a series of concentric spheres around another point P with radii $r_{0}, r_{0}+\lambda / 2, r_{0}+\lambda, \cdots$

Fresnel Zones

- Source strength per unit area in any zone is

$$
\varepsilon_{A} \propto \frac{\varepsilon_{0}}{\rho}
$$

- Curvature of the surface in each zone is small

Fresnel Zones

Electric field at point P due to secondary waves in zone ℓ :

$$
d E=K_{\ell}(\theta) \frac{\varepsilon_{A}}{r} \cos (\omega t-k(\rho+r)) d S
$$

Fresnel Zones

- How can we describe the element of area $d S$?

Law of cosines: $r^{2}=\rho^{2}+\left(r_{0}+\rho\right)^{2}-2 \rho\left(r_{0}+\rho\right) \cos \varphi$

$$
\begin{gathered}
2 r d r=2 \rho\left(r_{0}+\rho\right) \sin \varphi d \varphi \\
\rho \sin \varphi d \varphi=\frac{r d r}{r_{0}+\rho}
\end{gathered}
$$

Fresnel Zones

Electric field at point P due to secondary waves in zone ℓ :

Fresnel Zones

- Total electric field due to wavelets emitted in zone ℓ :

$$
\begin{aligned}
E_{\ell} & =2 \pi K_{\ell}(\theta) \frac{\varepsilon_{A} \rho}{\rho+r_{0}} \int_{r_{\ell-1}}^{r_{\ell}} \cos (\omega t-k(\rho+r)) d r \\
& =-\frac{2 \pi}{k} K_{\ell}(\theta) \frac{\varepsilon_{A} \rho}{\rho+r_{0}}[\sin (\omega t-k(\rho+r))]_{r_{\ell-1}}^{r_{\ell}}
\end{aligned}
$$

- But $r_{\ell}=r_{0}+\ell \lambda / 2$ and $r_{\ell-1}=r_{0}+(\ell-1) \lambda / 2$ and $k \ell \lambda / 2=\ell \pi$, so

$$
E_{\ell}=(-1)^{\ell+1} K_{\ell}(\theta) \frac{\varepsilon_{A} \rho \lambda}{\rho+r_{0}} \sin \left(\omega t-k\left(\rho+r_{0}\right)\right)
$$

- Even $\ell: E_{\ell}<0$, odd $\ell: E_{\ell}>0$

Fresnel Zones

- The total electric field at point P is the sum of all electric fields from each zone:

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}+\cdots+E_{m} \\
=\left|E_{1}\right|-\left|E_{2}\right|+\left|E_{3}\right|-\left|E_{4}\right|+\cdots \pm\left|E_{m}\right|
\end{gathered}
$$

- Most of the adjacent zones cancel:

$$
E=\frac{\left|E_{1}\right|}{2}+\left(\frac{\left|E_{1}\right|}{2}-\left|E_{2}\right|+\frac{\left|E_{3}\right|}{2}\right)+\cdots \pm \frac{\left|E_{m}\right|}{2}
$$

- Two possibilities:

$$
E \approx \frac{\left|E_{1}\right|}{2}+\frac{\left|E_{m}\right|}{2} \quad \text { or } \quad E \approx \frac{\left|E_{1}\right|}{2}-\frac{\left|E_{m}\right|}{2}
$$

- Fresnel conjectured that $\left|E_{m}\right| \rightarrow 0$ so $E \approx\left|E_{1}\right| / 2$

Circular Aperture: Fresnel Diffraction

- Suppose a circular aperture uncovers only the first m zones.
- If m is even, then the first two zones interfere destructively: $E=0$
- If m is odd, then all but the first one cancel each other:
$E=\left|E_{1}\right|$

- What about points off the central axis?

Circular Aperture: Fresnel Diffraction

- A point on the central axis:

Circular Aperture: Fresnel Diffraction

- A point that is not on the central axis:

Circular Aperture: Fresnel Diffraction

- There will also be light and dark fringes off the central axis

Circular Aperture: Fresnel Diffraction

Circular Obstacle: Fresnel Diffraction

- A circular obstacle will remove the middle zones, but the remaining zones can interfere constructively and destructively

$$
E=\left|E_{\ell+1}\right|-\left|E_{\ell+2}\right|+\left|E_{\ell+3}\right| \ldots \pm\left|E_{m}\right|
$$

- As in the case of the unobstructed wave, only the first unobstructed zone contributes:

$$
E \approx \frac{\left|E_{\ell+1}\right|}{2}
$$

- There should be a bright spot on the central axis

Poisson Bright Spot

- Poisson thought this result seemed absurd and dismissed Fresnel's paper
- Arago checked and found the bright spot:

Diffraction around a $1 / 8^{\prime \prime}$ ball bearing

Diffraction from an Edge

- The edge does not form a distinct shadow

Diffraction from an Edge

Fresnel Zone Plate

- Suppose we obscure only the even-numbered zones

$$
E=\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{5}\right|+\cdots+\left|E_{m}\right|
$$

- The electric field at the origin is $2 m$ times that of the unobstructed light
- What radii do we need to make some annular rings that block only the even-numbered zones?

Fresnel Zone Plate

$$
\begin{aligned}
& \left(\rho_{m}+r_{m}\right)-\left(\rho_{0}-r_{0}\right)=\frac{m \lambda}{2} \\
& \rho_{m}=\sqrt{\rho_{0}^{2}+R_{m}^{2}} \approx \rho_{0}+\frac{R_{m}^{2}}{2 \rho_{0}} \\
& r_{m}=\sqrt{r_{0}^{2}+R_{m}^{2}} \approx r_{0}+\frac{R_{m}^{2}}{2 r_{0}} \\
& \frac{1}{\rho_{0}}+\frac{1}{r_{0}} \approx \frac{m \lambda}{R_{m}^{2}}=\frac{1}{f} \quad \text { This looks like th } \quad \text { lens equation... }
\end{aligned}
$$

Fresnel Zone Plates

- There are also higher-order focal points:

$$
f_{m}=\frac{1}{m} f_{1}
$$

- Not an ideal lens
- Works only for one wavelength (large chromatic aberration)
- But applicable to a wide range of wavelengths
- Does not rely on weird atomic properties of transparent materials

Fresnel Zone Plate

$$
R_{m} \approx \sqrt{m f \lambda}
$$

- For green light, $\lambda=500 \mathrm{~nm}$
- Suppose $\rho_{0}=r_{0}=10 \mathrm{~cm}$
- Then $R_{1}=0.223 \mathrm{~mm}, R_{2}=0.316 \mathrm{~mm}$, etc...
- But this also works for x -rays: $\lambda \sim 0.1 \mathrm{~nm}$
- Then $R_{1}=3.16 \mu m, R_{2}=4.47 \mu \mathrm{~m}$
- Challenges: very small spacing, but needs to be thick enough to absorb x-rays.

