

Physics 42200 Waves & Oscillations

Lecture 29 – Geometric Optics

Spring 2014 Semester

Matthew Jones

Aberrations

- We have continued to make approximations:
 - Paraxial rays
 - Spherical lenses
 - Index of refraction independent of wavelength
- How do these approximations affect images?
 - There are several ways...
 - Sometimes one particular effect dominates the performance of an optical system
 - Useful to understand their source in order to introduce the most appropriate corrective optics
- How can these problems be reduced or corrected?

Aberrations

Limitations of paraxial rays:

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots$$

Paraxial approximation:

$$\sin \theta \approx \theta$$

Third-order approximation:

$$\sin\theta \approx \theta - \frac{\theta^3}{3!}$$

- The optical equations are now non-linear
 - The lens equations are only approximations
 - Perfect images might not even be possible!
 - Deviations from perfect images are called aberrations
 - Several different types are classified and their origins identified.

Aberrations

 Departure from the linear theory at third-order were classified into five types of *primary aberrations* by Phillip Ludwig Seidel (1821-1896):

- Coma
- Astigmatism
- Field curvature
- Distortion

Spherical Aberration

- We first derived the shape of a surface that changes spherical waves into plane waves
 - It was either a parabola, ellipse or hyperbola
- But this only worked for light sources that were on the optical axis
- To form an image, we need to bring rays into focus from points that lie off the optical axis
- A sphere looks the same from all directions so there are no "off-axis" points
- It is still not perfect there are aberrations

Spherical Aberration

Paraxial approximation:

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

Third order approximation:

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R} + h^2 \left[\frac{n_1}{2s_o} \left(\frac{1}{s_o} + \frac{1}{R} \right)^2 + \frac{n_2}{2s_i} \left(\frac{1}{R} - \frac{1}{s_i} \right)^2 \right]$$

Deviation from first-order theory

Spherical Aberrations

- Longitudinal Spherical Aberration: L · SA
 - Image of an on-axis object is longitudinally stretched
 - Positive L · SA means that marginal rays intersect the optical axis in front of F_i (paraxial focal point).
- Transverse Spherical Aberration: T · SA
 - Image of an on-axis object is blurred in the image plane
- Circle of least confusion: Σ_{LC}
 - Smallest image blur

Spherical Aberration

Example from http://www.spot-optics.com/index.htm

Spherical Aberration

- In third-order optics, the orientation of the lenses does matter
- Spherical aberration depends on the lens arrangement:

Spherical Aberration of Mirrors

- Spherical mirrors also suffer from spherical aberration
 - Parabolic mirrors do not suffer from spherical aberration, but they distort images from points that do not lie on the optical axis
- **Schmidt corrector plate** removes spherical aberration without introducing other optical defects.

Newtonian Telescope

Schmidt 48-inch Telescope

200 inch Hale telescope

48-inch Schmidt telescope

Coma (comatic aberration)

- Principle planes are not flat they are actually curved surfaces.
- Focal length is different for off-axis rays

Coma

 Negative coma: meridional rays focus closer to the principal axis

Coma

Vertical coma

Horizontal coma

Coma can be reduced by introducing a stop positioned at an appropriate point along the optical axis, so as to remove the appropriate off-axis rays.

Astigmatism

 Parallel rays from an off-axis object arrive in the plane of the lens in one direction, but not in a perpendicular direction:

Astigmatism

 This formal definition is different from the one used in ophthalmology which is caused by non-spherical curvature of the surface and lens of the eye.

Field Curvature

- The focal plane is actually a curved surface
- A negative lens has a field plane that curves away from the image plane
- A combination of positive and negative lenses can cancel the effect

Field Curvature

ullet Transverse magnification, m_T , can be a function of

the off-axis distance:

Correcting Monochromatic Aberrations

- Combinations of lenses with mutually cancelling aberration effects
- Apertures
- Aspherical correction elements.

Chromatic Aberrations

Index of refraction depends on wavelength

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Chromatic Aberrations

Copyright © 2005 Pearson Prentice Hall, Inc.

Chromatic Aberrations

L·CA: lateral chromatic aberration

Chromatic Aberration

Correcting for Chromatic Aberration

- It is possible to have refraction without chromatic aberration even when n is a function of λ :
 - Rays emerge displaced but parallel
 - If the thickness is small, then there is no distortion of an image
 - Possible even for non-parallel surfaces:
 - Aberration at one interface is compensated by an opposite aberration at the other surface.

Chromatic Aberration

Focal length:

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Thin lens equation:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

 Cancel chromatic aberration using a combination of concave and convex lenses with different index of refraction

Chromatic Aberration

 This design does not eliminate chromatic aberration completely – only two wavelengths are compensated.

Commercial Lens Assemblies

 Some lens components are made with ultralow dispersion glass, eg. calcium fluoride

Prisms

50

• Dispersing prism:

• Total deviation:

$$\delta = \theta_{i1} + \sin^{-1} \left[(\sin \alpha) \sqrt{n^2 - \sin^2 \theta_{i1}} - \sin \theta_{i1} \cos \alpha \right] - \alpha$$

Prisms

• The minimum deflection, δ_{min} , occurs when $\theta_{i1} = \theta_{t2}$:

$$n = \frac{\sin[(\delta_{min} + \alpha)/2]}{\sin(\alpha/2)}$$

This can be used as an effective method to measure n

A disadvantage for analyzing colors is the variation of δ_{min} with θ_{i1} - the angle of incidence must be known precisely to

Pellin-Broca Prism

One color is refracted through exactly 90°.

Rotating the prism about point A selects different colors.

Ideal for selecting a particular wavelength with minimal change to an optical system.

Abbe Prism

- A particular wavelength is refracted through 60°
- Rotating the prism about point O selects different colors.

Ernst Abbe 1840-1905

Reflective Prisms

- Total internal reflection on one surface
- Equal and opposite refraction at the other surfaces
- Deflection angle:

$$\delta = 2\theta_{i1} + \alpha$$

 Independent of wavelength (non-dispersive or achromatic prism)

Reflecting Prisms

- Why not just use a mirror?
 - Mirrors produce a reflected image
- Prisms can provide ways to change the direction of light while simultaneously transforming the orientation of an image.

Reflecting Prisms

 Two internal reflections restores the orientation of the original image.

The Porro prism

The penta prism

Dove Prism/Image Rotator

The Dove prism

Roof Prism

 Right-angle reflection without image reversal (image rotation)

Binoculars

Achromatic Doublets

Beam Splitters

- Reflect half the light in a different direction
- Important application: interferometry
 - Transmitted and reflected beams are phase coherent.
- Beam splitter plate
 - Partially reflective surfaces

- Beam splitter cube:
 - Right angle prisms cemented together
 - Match transmission of both polarization components

Fiber Optics

- Development of fiber optics:
 - 1854: John Tyndall demonstrated that light could be bent by a curved stream of water
 - 1888: Roth and Reuss used bent glass rods to illuminate body cavities for surgical procedures
 - 1920's: Baird and Hansell patented an array of transparent rods to transmit images
- Significant obstacles:
 - Light loss through the sides of the fibers
 - Cross-talk (transfer of light between fibers)
 - 1954: Van Heel studied fibers clad with a material that had a lower index of refraction than the core

Fiber Optics: Losses

Consider large fiber: diameter $D >> \lambda \rightarrow$ can use geometric optics

Example:

$$L = 1 \text{ km}, D = 50 \text{ }\mu\text{m}, n_f = 1.6, \ \theta_i = 30^{\circ}$$

 $N = 6,580,000$

Note: frustrated internal reflection, irregularities \rightarrow losses!

Path length traveled by ray:

$$l = L/\cos\theta_t$$

Number of reflections:

$$N = \frac{l}{D/\sin\theta_t} \pm 1$$

Using Snell's Law for θ_t :

$$N = \frac{L\sin\theta_i}{D\sqrt{n_f^2 - \sin^2\theta_i}} \pm 1$$

'Step-index' Fiber

For lower losses need to reduce N, or maximal θ_i , the latter is defined by critical angle for total internal reflection:

$$\sin \theta_c = \frac{n_c}{n_f} = \sin(90^\circ - \theta_t) = \cos(\theta_t) \implies \sin \theta_{\text{max}} = \frac{\sqrt{n_f^2 - n_c^2}}{n_i}$$

$$n_i = 1 \text{ for air}$$

Fiber and f/#

Angle θ_{max} defines the light gathering efficiency of the fiber, or numerical aperture NA:

$$NA \equiv n_i \sin \theta_{\rm max} = \sqrt{n_f^2 - n_c^2}$$

$$f / \# \equiv \frac{1}{2(NA)}$$
 Largest NA=1 Typical NA = 0.2 ... 1

And *f/#* is:

Data Transfer Limitations

1. **Distance** is limited by losses in a fiber. Losses α are measured in decibels (dB) per km of fiber (dB/km), i.e. in logarithmic scale:

$$\alpha = -\frac{10}{L} \log \left(\frac{P_o}{P_i} \right) \longrightarrow \frac{P_o}{P_i} = 10^{-\alpha L/10} \qquad P_o - \text{output power}$$

$$P_o - \text{output power}$$

$$P_i - \text{input power}$$

$$P_i - \text{input power}$$

 P_o - output power

L - fiber length

 P_o/P_i over 1 km Example: α 10 dB 1:10 20 dB 1:100 30 dB 1:1000

Workaround: use light amplifiers to boost and relay the signal

2. Bandwidth is limited by pulse broadening in fiber and processing electronics

Pulse Broadening

Multimode fiber: there are many rays (modes) with different OPLs and initially short pulses will be broadened (intermodal dispersion)

For ray along axis:

$$t_{\min} = L/v_f = Ln_f/c$$

For ray entering at θ_{max} :

$$t_{\text{max}} = l/v_f = Ln_f^2/(cn_c)$$

The initially short pulse will be broadened by:

Making
$$n_c$$
 close to n_f reduces the effect!

$$\Delta t = t_{\text{max}} - t_{\text{min}} = \frac{Ln_f}{c} \left(\frac{n_f}{n_c} - 1 \right)$$

Pulse Broadening: Example

$$n_f = 1.5$$

 $n_c = 1.489$

Estimate the bandwidth limit for 1000 km transmission.

Solution:

$$\Delta t = \frac{Ln_f}{c} \left(\frac{n_f}{n_c} - 1 \right) = \frac{10^6 \cdot 1.5}{3 \times 10^8} \left(\frac{1.5}{1.489} - 1 \right) s = 3.7 \times 10^{-5} s = 37 \mu s$$

Even the shortest pulse will become $^{\sim}37~\mu s$ long

Bandwidth ~
$$\frac{1}{3.7 \times 10^{-5} s} = 27 \text{ kbps}$$
 \leftarrow kilobits per second = ONLY 3.3 kbytes/s

Multimode fibers are not used for communication!

Graded and Step Index Fibers

Step index: the change in n is abrupt between cladding and core Graded index: n changes smoothly from n_c to n_f

Single Mode Fiber

Single mode fiber: there is only one path, all other rays escape from the fiber

Geometric optics does not work anymore: need wave optics. Single mode fiber core is usually only 2-7 micron in diameter

Single Mode Fiber: Broadening

'Transform' limited pulse product of spectral full width at half maximum (fwhm) by time duration fwhm:

$$\Delta f \Delta t \approx 0.2$$

Problem: shorter the pulse, broader the spectrum. refraction index depends on wavelength

A 10 fs pulse at 800 nm is \sim 40 nm wide spectrally If second derivative of n is not zero this pulse will broaden in fiber rapidly

Solitons: special pulse shapes that do not change while propagating