

Physics 42200 Waves & Oscillations

Lecture 25 – Propagation of Light

Spring 2014 Semester

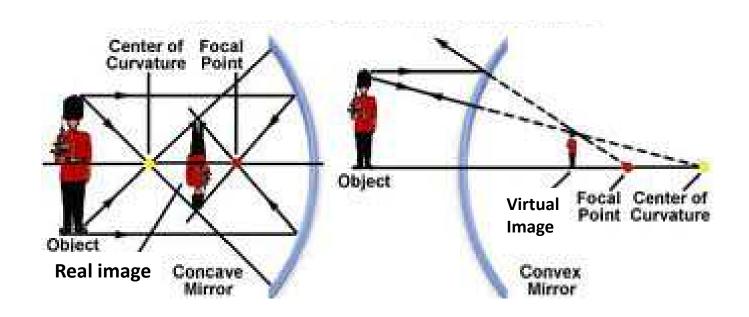
Matthew Jones

Geometric Optics

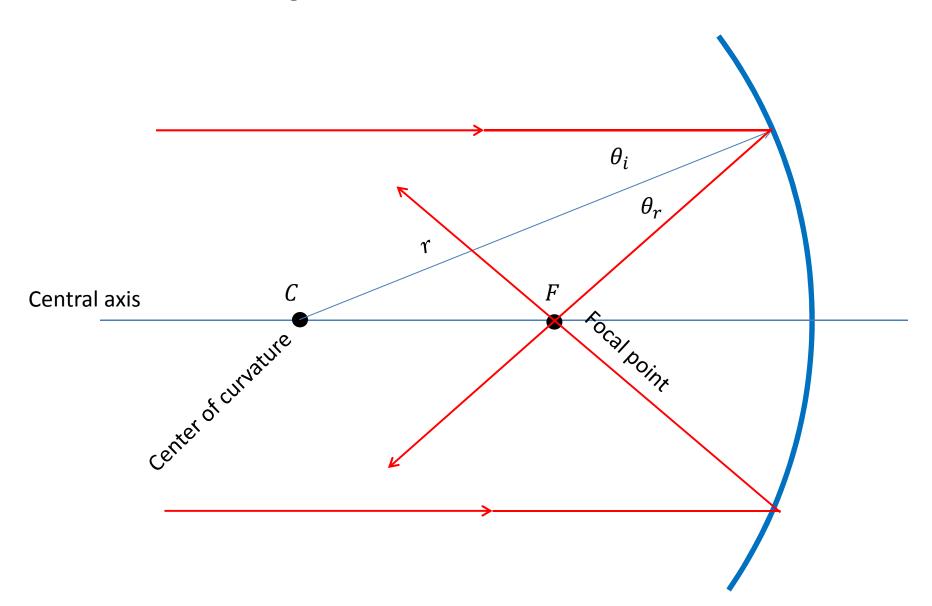
- Typical problems in geometric optics:
 - Given an optical system, what are the properties of the image that is formed (if any)?
 - What configuration of optical elements (if any) will produce an image with certain desired characteristics?
- No new physical principles: the laws of reflection and refraction are all we will use
- We need a method for analyzing these problems in a systematic an organized way

Types of Images

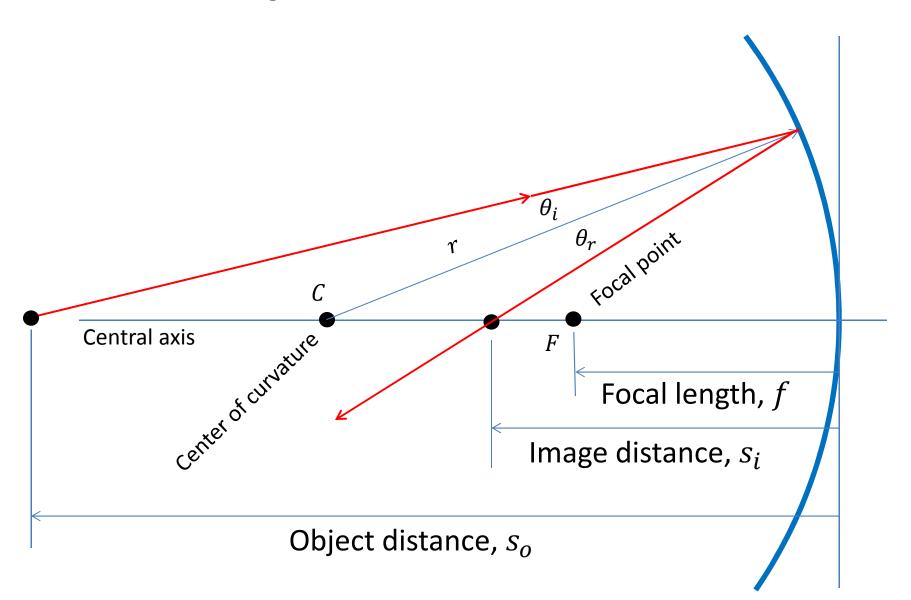
- Real Image: light emanates from points on the image
- Virtual Image: light appears to emanate from the image



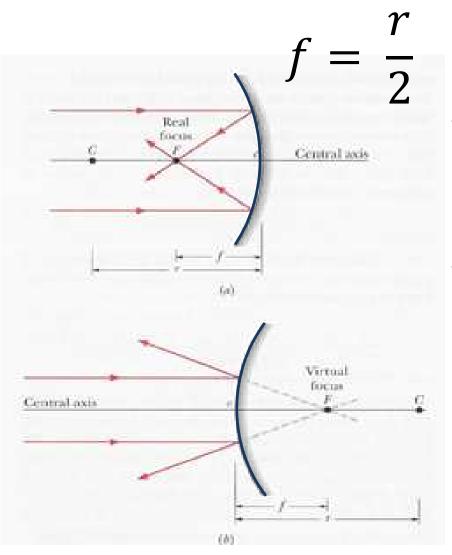
Spherical Mirrors



Spherical Mirrors



Focal Points of Spherical Mirrors



Sign convention:

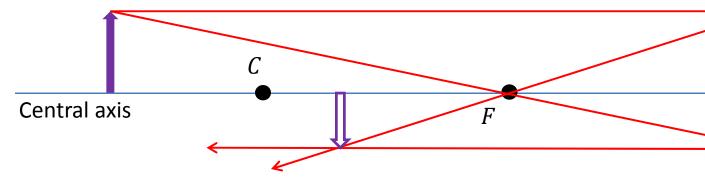
- Concave:
 - Radius of curvature, r > 0
 - Focal length, f > 0
- Convex:
 - Radius of curvature, r < 0
 - Focal length, f < 0

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

- Be careful about sign conventions!
- There is nothing physical about making r < 0 for convex mirrors and r > 0 for concave mirrors.
- Different books use different conventions.
- Make sure you know what sign conventions are used in any formulas you make use of.
- This is also true in many other fields of physics.

Properties of Images

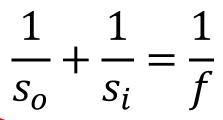
- Ray parallel to central axis reflected through focal point
- Ray through focal point reflected parallel to central axis.



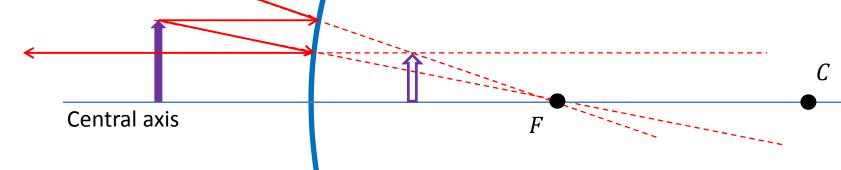
Reflected rays pass through the image: it is a *real image*

The image is inverted.

Properties of Images



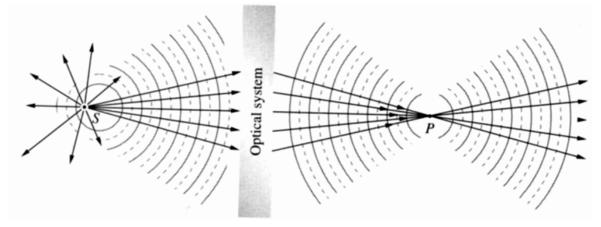
Object distance, $s_o > 0$ Focal length, f < 0Image distance, $s_i < 0$

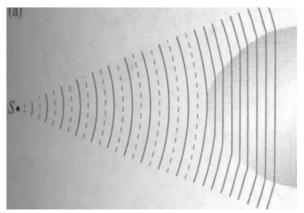


Reflected rays do not pass through the image, even though they might appear to... the image is *virtual*.

Lenses

• Insert a transparent object with n>1 that is thicker in the middle and thinner at the edges

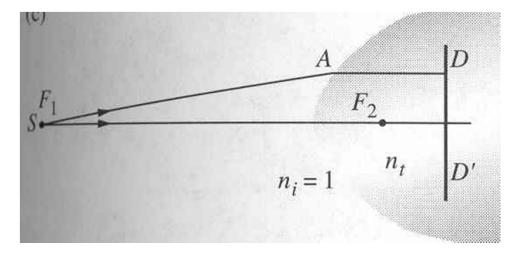




Spherical waves can be turned into plane waves.

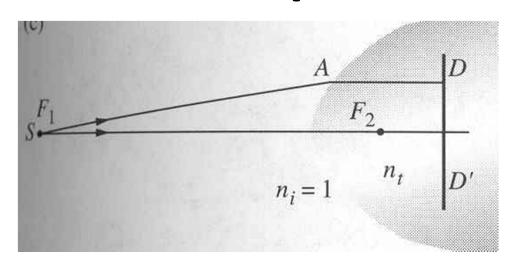
Aspherical Surfaces

 What shape of surface will change spherical waves to plane waves?



• Time to travel from S to plane DD' must be equal for all points A on the surface.

Aspherical Surfaces



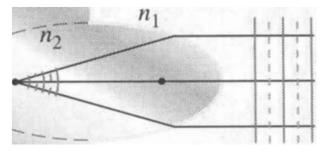
$$\frac{\overline{F_1 A}}{v_i} + \frac{\overline{AD}}{v_t} = \frac{n_i(\overline{F_1 A})}{c} + \frac{n_t(\overline{AD})}{c}$$

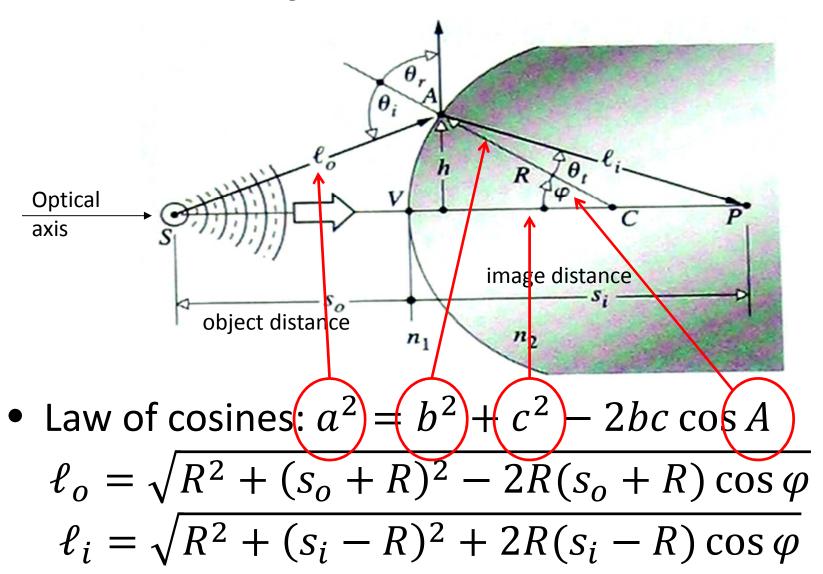
$$n_i = 1$$
 n_t D' $\overline{F_1 A} + \frac{n_t}{n_i} \overline{AD} = \text{constant}$

• This is the equation for a hyperbola if $n_t/n_i > 1$ and the equation for an ellipse if $n_t/n_i < 1$.

$$n_{ti} \equiv n_t/n_i > 1$$
 - hyperbola

$$n_{ti} \equiv n_t/n_i < 1$$
 - ellipsoid





Fermat's principle: Light will travel on paths for which the optical path length is stationary (ie, minimal, but possibly maximal)

$$\begin{split} \ell_o &= \sqrt{R^2 + (s_o + R)^2 - 2R(s_o + R)\cos\varphi} \\ \ell_i &= \sqrt{R^2 + (s_i - R)^2 + 2R(s_i - R)\cos\varphi} \\ OPL &= \frac{n_1\ell_o}{c} + \frac{n_2\ell_i}{c} \\ \frac{d(OPL)}{d\varphi} &= \frac{n_1R(s_o + R)\sin\varphi}{2\ell_o} - \frac{n_2R(s_i - R)\sin\varphi}{2\ell_i} = 0 \\ \frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} &= \frac{1}{R} \left(\frac{n_2s_i}{\ell_i} - \frac{n_1s_o}{\ell_o}\right)_{\text{But P will be different fo different values of } \varphi_{\dots} \end{split}$$

$$\frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} = \frac{1}{R} \left(\frac{n_2 s_i}{\ell_i} - \frac{n_1 s_o}{\ell_o} \right)$$

• Approximations for small φ :

$$\cos \varphi = 1 \qquad \sin \varphi = \varphi$$

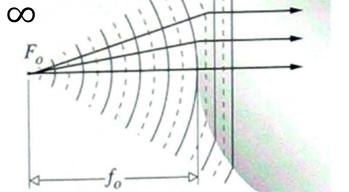
$$\ell_o = s_o \qquad \ell_i = s_i$$

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

- The position of P is independent of the location of A over a small area close to the optical axis.
- Paraxial rays: rays that form small angles with respect to the optical axis.
- Paraxial approximation: consider paraxial rays only.

• For parallel transmitted rays, $s_i \rightarrow \infty$

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R} \to \frac{n_1}{f_o} = \frac{n_2 - n_1}{R}$$



• First focal length (object focal length):

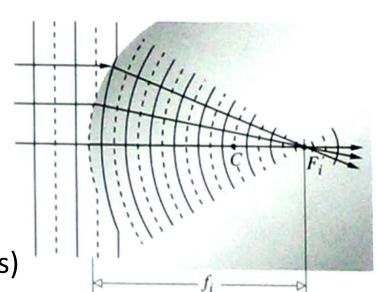
$$f_o = \frac{n_1}{n_2 - n_1} R$$

Second focal length

(Image focal length)

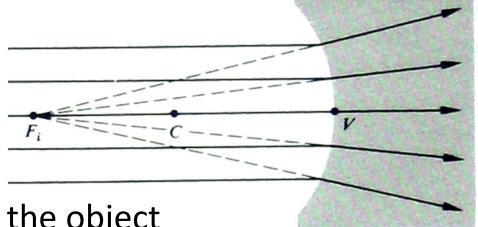
$$f_i = \frac{n_2}{n_2 - n_1} R$$

$$R>0, n_2>n_1\rightarrow f>0$$
 (converging lens)



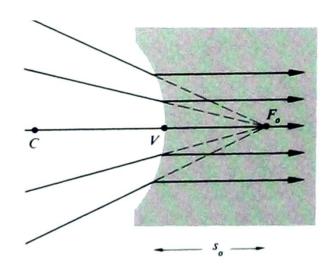
• When *R* < 0:

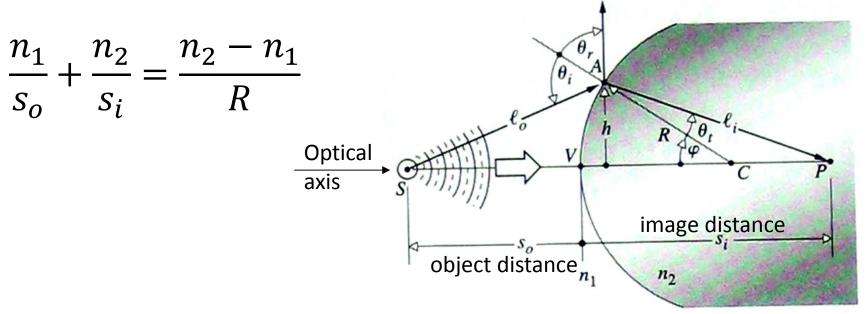
$$f_i = \frac{n_1}{n_2 - n_1} R$$



A virtual image appears on the object side.

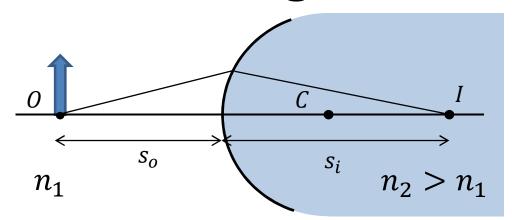
$$f_o = \frac{n_2}{n_2 - n_1} R$$





Assuming light enters from the left:

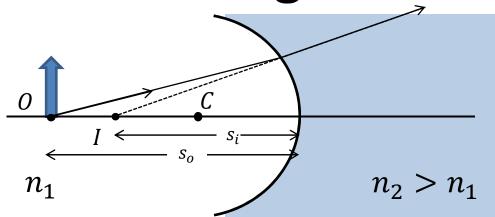
 $s_o, f_o > 0$ when left of vertex, V $s_i, f_i > 0$ when right of vertex, VR > 0 if C is on the right of vertex, V



$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

Convex surface:

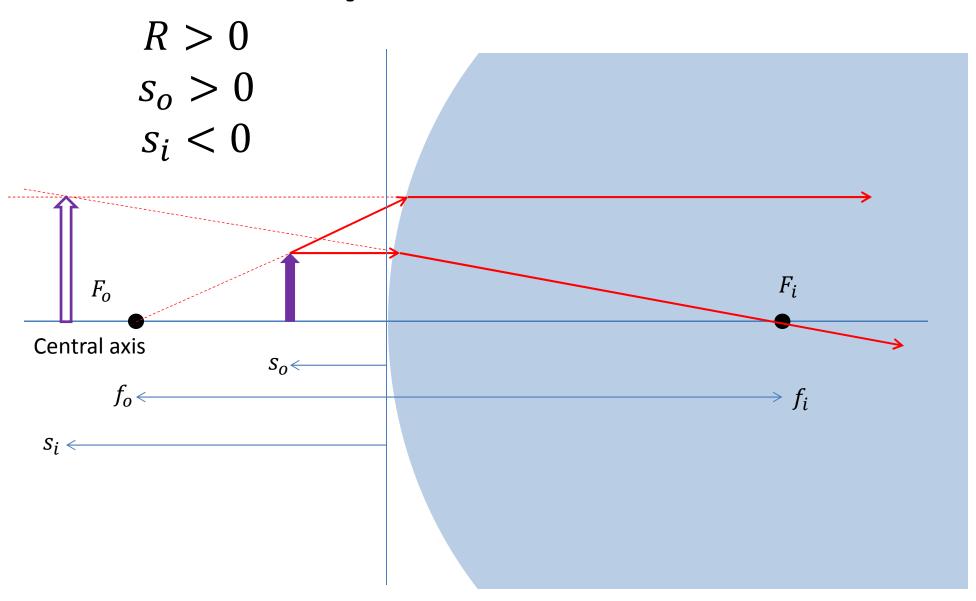
- $-s_o$ is positive for objects on the incident-light side
- $-s_i$ is positive for images on the refracted-light side
- -R is positive if C is on the refracted-light side



$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$
(same formula)

• Concave surface:

- $-s_o$ is positive for objects on the incident-light side
- $-s_i$ is negative for images on the incident-light side
- -R is negative if C is on the incident-light side



Magnification

Using these sign conventions, the magnification is

$$m = -\frac{n_1 s_i}{n_2 s_o}$$

- Ratio of image height to object height
- Sign indicates whether the image is inverted