PURDUE D) eparRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 23 — Review
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Midterm Exam:

Date: Thursday, March 13th
Time: 3:00 —10:00 pm
Room: PHYS 112

Material: French, chapters 1-8



Review

1. Simple harmonic motion (one degree of freedom)
— mass/spring, pendulum, floating objects, RLC circuits
— damped harmonic motion

2. Forced harmonic oscillators
— amplitude/phase of steady state oscillations
— transient phenomena

3. Coupled harmonic oscillators
— masses/springs, coupled pendula, RLC circuits
— forced oscillations

4. Uniformly distributed discrete systems

— masses on string fixed at both ends
— lots of masses/springs



Review

5. Continuously distributed systems (standing waves)
— string fixed at both ends
— sound waves in pipes (open end/closed end)
— transmission lines
— Fourier analysis

6. Progressive waves in continuous systems

— reflection/transmission coefficients



Simple Harmonic Motion

* Any system in which the force is opposite the
displacement will oscillate about a point of stable
equilibrium

e If the force is proportional to the displacement it will
undergo simple harmonic motion

e Examples:
— Mass/massless spring
— Elastic rod (characterized by Young’s modulus)
— Floating objects
— Torsion pendulum (shear modulus)
— Simple pendulum
— Physical pendulum
— LC circuit



Simple Harmonic Motion

You should be able to draw a free-body diagram and
express the force in terms of the displacement.

Use Newton’s law: mX = ForI@ = N

Write it in standard form:
X+ w?x =0
Solutions are of the form:
x(t) = Acos(wt — 68)
x(t) = Acoswt + Bsinwt

You must be able to use the initial conditions to
solve for the constants of integration



Examples
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mx = —mgx/{ mx = —kx



Examples
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Damped Harmonic Motion

* Damping forces remove energy from the system

 We will only consider cases where the force is
proportional to the velocity: F = —bv

* You should be able to construct a free-body diagram
and write the resulting equation of motion:
mx +bx+ kx =0
— You should be able to write it in the standard form:
X¥+yx+ wix =0
 You must be able to solve this differential equation!



Damped Harmonic Motion

X+yx+wix=0
Let x(t) = Ae%t
e Characteristic polynomial:
a? +ya+ wi =0
* Roots (use the quadratic formula):

2
Y Y
a=-L4 [T (w2
2 4
\
e C(Classification of solutions:

— Over-damped: y%/4 — (wg)? > 0  (distinct real roots)
— Critically damped: y%?/4 = (wy)?  (one root)
— Under-damped: y2/4 — (wg)? < 0 (complex roots)




Damped Harmonic Motion

e Over-damped motion: y4/4 — (wg)* > 0

x(t) = Ae_%tet\/ﬁ_(wo)2 + Be_%te_t\/ﬁ_(wo)2
e Under-damped motion: ¥?/4 — (wg)* < 0
x(t) = Ae__t lt\/(w‘))z__ + Be™ 5t _lt\/(w )2__
e Critically damped motion:
x(t) =(A+ Bt)e_%t

 You must be able to use the initial conditions to
solve for the constants of integration




Sum of potential differences:

di 1 t
_Ld_zlr_ i(t)R _E<Q° + fo i(t)dt) =0

Initial charge, @, defines the initial conditions.



Example

Ld—+z(t)R+ (QO fi(t)dt)z
0

dt
Differentiate once with respect to time:
d?i di 1
LF'FRdt-FCl(t) =(
d?i di
7 +)/d + wii(t) =0

Remember, the solution is i(t) but the initial
conditions might be in terms of Q(t) = Q, + [ i(t)dt

(See examples from the lecture notes...)



Forced Harmonic Motion

 Now the differential equation is
mi + bx + kx = F(w) = F, cos wt
* Driving function is not always given in terms of a real
force... remember Assignment #3:
N d*n ,
y+vyy+wyy = T Cw* cos wt
 General properties:
— Steady state properties: t > 1/y
— Solution is y(t) = A cos(wt — 6)
— Amplitude, 4, and phase, 4, depend on w



Forced Harmonic Motion

“Q” quantifies the amount of damping:
Wy
Q=—
14

(large Q means small damping force)

wo/w

Alw) = Fo

e-ay

1
5 =tan~ ! (0)0 iQw )
w W

But watch out when Fy = Cw?

1/2




Resonance

Qualitative features: amplitude
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Average Power

 The rate at which the oscillator absorbs energy is:
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Resonance

* Qualitative features: phase shift

0 — 0 at low frequencies
0 — m at high frequencies

w
6=Ewhenw=w0



Coupled Oscillators

* Restoring force on

| i pendulum A:

| € \f Fy = —k(x4 — xp)

: i * Restoring force on
pendulum B:

A Fip = k(xa = x5)

F)XB X4
m

mjéA | {ng-I-k(xA—xB) = ()
m

mjéB : ng—k(xA—xB):O

4



Coupled Oscillators

* You must be able to draw the free-body diagram
and set up the system of equations.

m
mi, + TQxA + k(xg —xg) =0
. mg
mxB +7xB — k(xA — xB) —_ O

 You must be able to write this system as a matrix
equation.

(5@4) + <(wo)2 + (wc)? ey >(xA(t)) =0

Xpg —(w,)? (wg)? + (w,)? ) \xp(t)



Coupled Oscillators

Assume solutions are of the form

(xA(t)) = (;C’;) cos(wt — 0)

xp(t)
Then,
(<w0>2 +(00)? — o (o) >(x,4) .,
_(wc)z (wo)z T (wc)z _ (‘)2 XB

You must be able to calculate the eigenvalues of a 2x2
or 3x3 matrix.

— Calculate the determinant

— Calculate the roots by factoring the determinant or using the
quadratic formula.

These are the frequencies of the normal modes of
oscillation.



Coupled Oscillators

 You must be able to calculate the eigenvectors of a
2x2 or 3x3 matrix

 General solution:
x(t) = Ax; cos(w,t — a) + Bx, cos(w,t — ) + -+
 You must be able to solve for the constants of
integration using the initial conditions.



Coupled Discrete Systems

 The general method of calculating eigenvalues will always
work, but for simple systems you should be able to decouple
the equations by a change of variables.

—

m

@ ma’c’A+Tng+k(xA—xB)=O
1o myg

~mx3+7x3—k(xA—xB)=O

%a 4 [(@0)? + (we)? x4 — (we)2x5 = 0
@ 5 + [(00)? + (@) — (@0)?x4 = O
B Wy = W, w, =+ k/m
1 = Xg T Xp
@{ 2 = X4 — XB
G + (wo)?q1 =0
g, + (w)?q, =0




Forced Oscillations

* We mainly considered the qualitative aspects

— We did not analyze the behavior when damping forces
were significant

 Main features:
— Resonance occurs at each normal mode frequency
— Phase difference is § = /2 at resonance

* Example: x4 driven by the force F(w) = F, cos wt

— Calculate force term applied to normal coordinates
Fi(w) = F,(w) = F, cos wt
— Reduced to two one-dimensional forced oscillators:
G, + (wg)?q, = Fy/m cos wt
G, + (w')%q, = Fy/m cos wt



Uniformly Distributed Discrete Systems

oW WP WWWIREP WA MWW,

Equations of motion for masses in the middle:
% + 2(wo)?x; — (0o)* (X1 + Xi41) =0

(a)o)z =k/m

«~— ¢ =

Yn + 2((‘)0)23"71 — (wo)z(yn+1 + yn—l) =0
(wo)z =T/m¢t



Uniformly Distributed Discrete Masses

Proposed solution:
x,(t) = A, cos wt
Apg +An  —0® + 2(wg)?

Ap (wo)? oo™
We solved this to determine A, and wy: p-\wd ?1(:0@&
A. . = C sin ( i ) P:;é‘\\a‘\“%
Tk N +1 @
_ _ km \)e(\ol of
Wi = 2Wo SIN (Z(N n 1)) o

General solution:

- nkm
X, (t) = Z ay sin( n ) cos(wyt — 6y)




Vibrations of Continuous Systems

Amplitude of mass n for normal mode k:

_ nkm
Appr =0C sm( )

N+1
Frequency of normal mode k:

_, _ km
Wy = 2w, Sin 2N+ D)

Solution for normal modes:
xn(t) = Ay cOS Wit
General solution:

N
X, (t) = z ay sm( i ) cos(wyt — &)




Masses on a String

First normal mode

Second normal mode




Lumped LC Circuit
L
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déi,
dt?

+ Zwoln wg(in—l +in+1) =0

This is the exact same problem as the previous two examples.



Forced Coupled Oscillators

e Qualitative features are the same:

— Motion can be decoupled into a set of N
independent oscillator equations (normal modes)

— Amplitude of normal mode oscillations are large
when driven with the frequency of the normal
mode

— Phase difference approaches /2 at resonance

 You should be able to anticipate the
qualitative behavior when coupled oscillators
are driven by a periodic force.



Continuous Distributions

Limitas N > coand m/¥ — u:
0%y 1 0%y
dx2  v2 ot2
Boundary conditions specified at x = 0 and x = L:
— Fixed ends: y(0) = y(L) =0
— Maximal motion at ends: y(0) = y(L) =0

— Mixed boundary conditions
Normal modes will be of the form
v, (x,t) = a, sin(k,,x) cos(w,t — a,)
or v, (x,t) = a, cos(k,x) cos(w,t — a,,)



Properties of the Solutions

y(L,t)~sink,L=0 =  k,L=nn

4 2L
Ay = —
n
d L =
nimiov
Wy = —
third 2L 3—1 L
3 2L
nv
111111 i L 2v i
2 L 2L




Boundary Conditions

e Examples:
— String fixed at both ends: y(0) = y(L) =0
— Organ pipe open atoneend: y(0) = y(L) =0
e Driving end has maximal pressure amplitude
— Organ pipe closed at oneend: y(0) =0, y(L) =0
— Transmission line open atone end: i(L) = 0

T di(L
— Transmission line shorted at one end: v(L) « {L) _

Displacernent Mode sboM nemaelgeid




Fourier Analysis

* Normal modes satisfying y(0) = y(L) = 0:
~ (NTTX
v, (x,t) = a, sin (T) cos(w,t — ay)

e General solution:

- . nnx
y(x,t) = 2 a,, sin (T) cos(w,t — ay)
n=1

e |nitial conditions:

0.0)

_ nnx = nnx
y(x,0) = 2 a, sm( 7 cos(an) = z a., sm

n=1
00

. . Mmmx , nnx
y(x,0)=—zanwnsm( 7 )sm(an)—zbnsm 7 )

n=1



Fourier Analysis

* Fourier sine transform:

u(x) = i a', sin (nLLx)
21=1
a, = %f u(x) sin (nLLx) dx
0

* Fourier cosine transform:

" _Zjl' (TlT[X)d
n=7 \ v(x) cos T X



Fourier Analysis

, —
/ . .
b, = a,w, sina,
Solve for amplitudes:

b'2
_ 12 n
\ “n
Solve for phase:
/
b’y
tan a,, = —

d nWn



Fourier Analysis

e Suggestion: don’t simply rely on these formulas — use

your knowledge of the boundary conditions and initial
conditions.

e Example:

— If you are given y(x,0) = 0and y(0) = y(L) = 0 then you
know that solutions are of the form
nmwx

y(x,t) = z a,,sin (T) COS Wyt

— If you are given y(x,0) = 0 and y(0) = y(L) = 0 then
solutions are of the form

. NTXN
y(x,t) = z a,,sin (T) sin w,,t

oddn



Progressive Waves

e Far from the boundaries, other descriptions are more transparent:
y(x, t) = f(x £ vt)
 The Fourier transform gives the frequency components:

1 (0]
ooA(k) = Ej_mg (x) cos(olix) dx
g(x) = \/%_ﬂ J_OOA(k) cos(kx) dk + \/%_ﬂ j_ooB (k) sin(kx) dk B (k)

1 (@ |
= Ef— g(x) sin(kx) dx

 Narrow pulse in space = wide range of frequencies
e Pulse spread out in space =2 narrow range of frequencies



Properties of Progressive Waves

 Power carried by a wave:

— String with tension T and mass per unit length u

1 1
P = E,ua)zsz = EZCUZAZ
 Impedance of the medium:
Z=u=T/v

* Important properties:
— Impedance is a property of the medium, not the wave

— Energy and power are proportional to the square of the
amplitude



Reflections

e Wave energy is reflected by discontinuities in the impedance
of a system

e Reflection and transmission coefficients:
— The wave is incident and reflected in medium 1

‘\\
— The wave is transmitted into medium 2 ‘a‘\xz\N\f
— ot N
p = YA 2 YA 1 \((;ES “e%a’&\
Z,+Z, v e
ZZZ QOS\‘\
T = P\\\Na\ls
i+ 2,

e Wave amplitudes:
A = pAl
At — TA



Reflected and Transmitted Power

 Power is proportional to the square of the
amplitude.
— Reflected power: P. = p*P;
— Transmitted power: P, = 2P,

* You should be able to demonstrate that energy is
conserved:

ie, show that P; = P,. + P,



That’s all for now...

e Study these topics — make sure you

understand the examples and assignment
guestions.

* Next topics: waves applied to optics.



