
Physics 42200

Waves & Oscillations

Spring 2014 Semester
Matthew Jones

Lecture 21 – French, Chapter 8



Midterm Exam:

Date: Thursday, March 13th

Time: 8:00 – 10:00 pm

Room: PHYS 112?

Material: French, chapters 1-8



Impedance

• Mechanical impedance:
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Electrical Impedance
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• This depends strongly on the geometry of the cable

• The dimensions are ohms
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• As far as pulses are concerned, the cable looks like a 

resistance and satisfies Ohm’s law:

, = -/�



Electrical Impedance

• Impedance at the end of the cable:

Open circuit, �′ = ∞

Short circuit, �′ = 0

Resistor, �′ = (
(
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�
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Electrical Impedance

• Reflection coefficient:

/ = �� − �
�� + �

• Transmission coefficient:

2 = 2��
�� + �

• Limiting cases to remember:

– Open circuit: / = 1, 2 = 2
– Short circuit: / = −1, 2 = 0
– Matched, �� = �: / = 0, 2 = 1.



Power Transmission

• How much power is reflected?

– Open circuit or short circuit:

4' =
-'

� = -5


�
�� − �
�� + �



= -5


� = 45
– Reflected power is zero when �� = �
– In this case, all power must be transmitted

– Maximal power is transferred to a load of 
resistance ( when ( = �.

– This is called impedance matching.



Source Impedance

• An ideal voltage source provides a given 

voltage, independent of the current.

– But real voltage sources can’t deliver arbitrarily 

large currents

• Voltage sources are modelled by an ideal 

voltage source and a resistor:

V (
This resistance is called the 

source impedance.  

Sometimes we want the 

source impedance to be 

finite…



Drivers/Receivers

• Now we can model the entire cable:

• Current from the source:

, = -
�7 + �

• Voltage at the left end of the cable:

-5 = - − ,	�7 = - �
�7 + �
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Drivers/Receivers

• Voltage pulse propagates to the receiver

• The pulse might be reflected at the receiver

/ = �' − �
�' + �

• When �' < � the reflected pulse is inverted.
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Drivers/Receivers

• Voltage pulse propagates back to the source

• The pulse can also be reflected from an 

impedance mismatch at the source:

/ = �7 − �
�7 + �

• When �7 > � the reflected pulse is not inverted.
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Drivers/Receivers

• Reflected pulse propagates to the receiver

• The system is linear, so the observed signal at 

any point is the sum of all incident and 

reflected waves.
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Waves in Three Dimensions

• Wave equation in one dimension:
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• The solution, ;(<, =), describes the shape of a string 
as a function of < and =.

• This is a transverse wave: the displacement is 
perpendicular to the direction of propagation.

• This would confuse the following discussion…

• Instead, let’s now consider longitudinal waves, like 
the pressure waves due to the propagation of sound 
in a gas.



Waves in Three Dimensions

• Wave equation in one dimension:
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• The solution, @(<, =), describes the excess pressure 
in the gas as a function of < and =.

• What if the wave was propagating in the ;-direction?
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• What if the wave was propagating in the A-direction?
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Waves in Three Dimensions

• The excess pressure is now a function of <B and =.
• Wave equation in three dimensions:
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• But we like to write it this way:
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• Where C
 is called the “Laplacian operator”, but you 

just need to think of it as a bunch of derivatives:
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Waves in Three Dimensions
• Wave equation in three dimensions:
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• How do we solve this?  Here’s how…

@ <B, = = @%E5 F∙HBIJK
• One partial derivatives:

:@
:< = L@%E5 F∙HBIJK

:
:< M ∙ <B − N=

= L@%E5 F∙HBIJK
:
:< MH< + MO; + MPA − N=
= LMH@ <B, =

• Second derivative:

:
@
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	@(<B, =)



Waves in Two and Three Dimensions

• Wave equation in three dimensions:

C
@ = 1
�


:
@
:=


• Second derivatives:
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Waves in Two and Three Dimensions

• Wave equation in three dimensions:

C
@ = 1
�


:
@
:=


− MH
 + MO
 + MP
 @ <B, = = −N


�
 @(<B, =)
• Any values of MH, MO, MP		satisfy the equation, 

provided that

N = � MH
 + MO
 + MP
 = � M
• If MO = MP = 0 then @ <B, = = @%E5 FQHIJK but this 

described a wave propagating in the +< direction.



Waves in Three Dimensions

@ <B, = = @%E5 F∙HBIJK
• The vector, M, points in the direction of propagation

• The wavelength is R = 2$/ M
• How do we visualize this solution?

– Pressure is equal at all points <B such that M ∙ <B − N= = S
where S is some constant phase.

– Let <B� be some other point such that M ∙ <B′ − N= = S
– We can write <B� = <B + T and this tells us that M ∙ T = 0.

– M and T are perpendicular.

– All points in the plane perpendicular to M have the same 
phase.



Waves in Three Dimensions

• As usual, we are mainly 
interested in the real 
component:

U VB, = = W cos M ∙ <B − N=
• A wave propagating in the 

opposite direction would be 
described by

U′ VB, = = W′ cos M ∙ <B + N=
• The points in a plane with a 

common phase is called the 
“wavefront”.



Waves in Three Dimensions

U VB, = = W cos M ∙ <B ∓ N=
• Sometimes we are free to pick a coordinate system in 

which to describe the wave motion.

• If we choose the <-axis to be in the direction of 
propagation, we get back the one-dimensional 
solution we are familiar with:

U VB, = = W cos M< ∓ N=
• But in one-dimension we saw that any function that 

satisfied [(< ± �=) was a solution to the wave 
equation.

• What is the corresponding function in three 
dimensions?



Waves in Three Dimensions

N = � MH
 + MO
 + MP
 = � M
• General solution to the wave equation are functions 

that are twice-differentiable of the form:

U VB, = = ��[ M] ∙ VB − �= + �
^ M] ∙ VB + �=
where M] = M/ M

• Just like in the one-dimensional case, these do not 

have to be harmonic functions.



Example

• Is the function U <B, = = _< + `= + a 
 a solution 

to the wave equation?

• It should be because we can write it as

U <B, = = _(b + cd) + a 


where � = `/_ which is of the form ^(< + �=)
• We can check explicitly:

ef
eH = 2_ _< + `= + a ef

eH = 2` _< + `= + a
e�f
eH� = 2_
 e�f

eH� = 2`

:
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Example

• Is the function U <B, = = _<I
 + `=, where 

_ > 0, ` > 0, a solution to the wave equation?

• It is twice differentiable…

e�f
eH� =

gh
Hi

e�f
eK� = 0

• But it is not a solution:

– Only true if _ = 0, which we already said was not the case.

• This is not a solution to the wave equation.
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Waves in Two Dimensions

• Plane waves frequently provide a good description of 

physical phenomena, but this is usually an 

approximation:

• This looks like a wave… can the wave equation 

describe this?



Waves in Two Dimensions

• Rotational symmetry:

– Cartesian coordinates are not well suited for describing this 

problem.

– Use polar coordinates instead.

– Motion should depend on V but should be independent of k
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Waves in Two Dimensions

• Wave equation:  C
U = �
p�

e�f
eK�

• How do we write C
 in polar coordinates?

V = <
 + ;

< = V cos k
; = V sin k

• Derivatives:
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Waves in Two Dimensions



Waves in Two Dimensions

• Laplacian in polar coordinates:

C
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U
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V
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• When the geometry is does not depend on k or A:

C
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U
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V
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• Wave equation:

C
U = 1
V
:
:V V :U:V = 1
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Waves in Two Dimensions

• Wave equation:

C
U = 1
V
:
:V V :U:V = 1
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U
:=


• If we assume that 
e�f
eK� = −ω
U then the equation is:
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U
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V
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�
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• Change of variables:  Let / = VN/�
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Waves in Two Dimensions

• Bessel’s Equation:

:
U
:/
 +

1
/
:U
:/ + U(/) = 0

• Solutions are “Bessel functions”: w%(/), x% /

/
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• Solutions: w%(MV), x%(MV)
• Graphs:

• Series representation:

w% MV = } −1 ~ MV 
~

2
~ �! 


�
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• Solutions: sin M< , cos M<
• Graphs:

• Series representation:

cos M< = } −1 ~ M< 
~

2� !
�

~�%

Bessel Functions?
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Asymptotic Properties

• At large values of V…

MV

yz(�o)

|z(�o)
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Asymptotic Properties

• When V is large, for example, MV ≫ 1
w% MV ≈ 2/$ cos MV − $/4

MV
x%(MV) ≈ 2/$ sin MV − $/4

MV

MV



Energy

• The energy carried by a wave is proportional to the 

square of the amplitude.

• When U(V, =)~W ��� F'
' the energy density decreases 

as 1/V
• But the wave is spread out on a circle of 

circumference 2$V
• The total energy is constant, independent of V
• At large V they look like plane waves:



Waves in Three Dimensions

• In spherical coordinates (V, k, S) the Laplacian is:

C
U = 1
V
:

:V
 VU +

1
V
 sin k

:
:k sin k :U:k + 1

V
 sin
 k
:
U
:S


• When U(VB, =) is independent of k and S then the 

second line is zero.

• This time, let U V, = = �(')
' cosN=

• Time derivative: 
e�f
eK� = −N
 U



Waves in Three Dimensions

• Let U V, = = �(')
' cosN=

C
U = 1
V
:

:V
 VU

= 1
V
:

:V
 [ V cosN= = −N


�

[(V)
V cosN=

:
[
:V
 = −N


�
 [(V)
• We know the solution to this differential equation:

[ V = WE5F'
• The solution to the wave equation is

U V, = = W E
5F'

V cosN=



Waves in Three Dimensions

• Or we could write

U V, = = W cos M(V ∓ �=)
V

• Waves carry energy proportional 

to amplitude squared: ∝ 1/V

• The energy is spread out over a 

surface with area 4$V

• Energy is conserved

• Looks like a plane wave at large V


