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Fourier Analysis

• Wave equation:������ = 1�� ������
• Boundary conditions at � = 0:� 0, � = � �, � = 0
• Normal modes of oscillation:�
 = ����
• Wavelengths of normal modes:�
 = 2��



Fourier Analysis

• Normal modes of oscillation:�
 �, � = sin ���� cos �
�
• General solution:

� �, � = � �
 sin ���� cos �
� − �

�


��
• The parameters �
 and �
 are determined from initial 

conditions.  At � = 0, we can write

� �, 0 = � � = � �′
 sin ����
�


��
where �
 = �
 cos �
. 



Fourier Analysis

• Fourier’s method:�′! = 2� " sin #���$
% � � &�

• Example:  (French 6-12):

– The string has tension ' and mass per unit length (
– If the string is released from rest, what is �(�, �)?

ℎ�



Example

• Initial displacement is described by the function

� � = ,2ℎ�� 																					0 < � < �/2
2ℎ 1 − �� 							� 2⁄ < � < �

• The string is released from rest, so � � = 0.

• That must mean that �
 = 0 and so �
 = �
.

ℎ�



Example

• Fourier coefficients:�! = 2� " sin #���$
% � � &�

= 2� " sin #��� 2ℎ��$/�
% &�

+ 2� " sin #��� 2ℎ(1 − � �⁄ )$
$/� &�

= 4ℎ�� " �$/�
% sin #��� &� − 4ℎ�� " � sin #��� &�$

$ �⁄ + 4ℎ� " sin #��� &�$
$ �⁄ 	

• This is getting messy…

• Don’t get your table of integrals just yet…

• Think about the symmetry of the problem.



Example

• Integrals with even values of # will be zero.
– This is because sin	(#�� �⁄ ) is odd but � � is even when reflected 

about the point � = �/2.

• When # is odd, we can just double the value of the integral from 0 to �/2.

# = 1
# = 2
# = 3



• When # is odd,�! = 2� " sin #���$
% � � &� = 4� " sin #��� 2ℎ��$/�

% &�
= 8ℎ�� " � sin #��� &�$/�

%
• Now get your table of integrals:

�! = −8ℎ�� 	 ��#� cos #��� + 8ℎ�� 	 ��#��� sin #���= ± 8ℎ#���

Example

� 2⁄
0



Example

�� = 8ℎ�� = 0.8106	ℎ



Example

�� = 8ℎ�� = 0.8106	ℎ
�8 = − 8ℎ9�� = −0.0901	ℎ



Example

�� = 8ℎ�� = 0.8106	ℎ
�8 = − 8ℎ9�� = −0.0901	ℎ
�: = 8ℎ25�� = 0.0324	ℎ



Example

�� = 8ℎ�� = 0.8106	ℎ
�8 = − 8ℎ9�� = −0.0901	ℎ
�: = 8ℎ25�� = 0.0324	ℎ

�< = − 8ℎ49�� = −0.0165	ℎ



Example

�� = 8ℎ�� = 0.8106	ℎ
�8 = − 8ℎ9�� = −0.0901	ℎ
�: = 8ℎ25�� = 0.0324	ℎ

�< = − 8ℎ49�� = −0.0165	ℎ
�= = 8ℎ81�� = 0.0100	ℎ



Example

� �, � = � �! sin ���� cos �!��
!���! = #���

• Period of lowest frequency mode:' = 1>� = 2��
• After time � = ' 2⁄ = � �⁄ ,

� �, � = � �! sin ���� cos �#�
!��= −�(�)

• The string maintains its triangular shape!  However, the motion is 

more complex than just � � cos �?@A …

−1 because �! ≠ 0
only when # is odd.



Wave Propagation

• The wave equation:������ = 1�� ������
• We worked out solutions that satisfied specific 

boundary conditions.

• A general solution is any function that is of the form� �, � = C � ± ��
• Are these two pictures compatible?



Wave Propagation

• Solutions for normal modes:�
 �, � = sin ���� cos �
��
 = ����
• Trigonometric identity:sin � cos D = 12 [sin � + D + sin � − D ]
• This gives,�
 �, � = 12 sin ���� + �
� + sin ���� − �
�



Wave Propagation

�
 �, � = 12 sin ���� + �
� + sin ���� − �
�
• Write this as�
 �, � = 12 sin #(� + ��) + sin #(� − ��)# = ���
• This is the equation for two sine-waves moving in 

opposite directions.

• The text refers to these as “progressive waves”.

• The “standing waves” that satisfy the boundary 
conditions are the superposition of “progressive waves” 
that move in opposite directions.



Wave Propagation

• Waves can propagate in either direction.

• Easiest to visualize in terms of a pulse, or wave 

packet:

• If this disturbance is far from the ends, the effect is 

the same as letting � → ∞



Wave Propagation

� �, � = � �
 sin ���� cos �
� − �

�


��
• In general, we could write

� �, � = � �
 sin ���� cos �
� − �

�


��+	� I
 cos ���� cos(�
� − �
)�

�� 	

• In the limit where the disturbance is very far from either boundary, the 

Fourier sine transform is:J # = " �(�) sin #� &��
K�

• Similarly, we can define the Fourier cosine transform:L # = " �(�) cos #� &��
K�



Wave Propagation

J # = " �(�) sin #� &��
K�

• Similarly, we can define the Fourier cosine transform:L # = " �(�) cos #� &��
K�

• The original function is represented by:� � = 1� " L(#) cos(#�) &#�
% + 1� " J(#) sin(#�) &#�

%
• If L # = L −# and J # = −J(−#) then we can make this more 

symmetric:

� � = 12� " L(#) cos(#�) &#�
K� + 12� " J(#) sin(#�) &#�

K�



Wave Propagation

• To make this even more symmetric we can change 

slightly the definition of L(#) and J # :J # = 12� " �(�) sin #� &��
K�L # = 12� " �(�) cos #� &��
K�

• Then,� � = 12� " L(#) cos(#�) &#�
K� + 12� " J(#) sin(#�) &#�

K�



Wave Propagation

• Previously, we interpreted the coefficients �
 as the 

amplitude of the normal mode with frequency �

– wavelength �
 = 2� �⁄
– wavenumber #
 = 2� �
⁄ = �� �⁄

• Now, we interpret L(#) and J(#) as the amplitude 

for harmonic waves with wavenumbers between #
and # + &#.

• It can be important to decompose a pulse into its 

frequency components because in real materials, the 

nature of wave propagation can depend on the 

frequency.



Example

• Consider a pulse that has a Gaussian shape:

N � = 12� OKPQ/�
• Special case:

– Peak position is at � = 0
– Width of the peak is R = 1

• Other Gaussian functions can be transformed into this 
special case by linear change of variables.

• What is the continuous Fourier transform?



Example

J # = 12� " N(�) sin #� &��
K�

• The Gaussian function N � is an even function:N � = N −�
• The function sin #� is an odd function:sin −#� = −sin #�
• This integral must vanish…J # = 0



Example

L # = 12� " N(�) cos #� &��
K�= 12� " OKPQ/� cos #� &��

K�
• From your table of integrals:" OKSPQ cos I� &��

K� = �� OKTQ/US
• In this case, � = 1/2 and I = #L # = 12� × 2�OK!Q/� = 12� OK!Q/�
• This is a Gaussian distribution of wavenumbers # = �/�.



Notes about Fourier Transforms

• For the Gaussian pulse,N � = 12�R OKPQ/�WQ
• The amplitudes of the frequency components are:L # = ��? OK!QWQ/�,  J # = 0
• When the pulse is narrow, R ≪ 1, then the exponent 

in L(#) is large for a large range of #
– Since � = �/#, a narrow pulse has a wide range of 

frequency components.

• Conversely, a wide pulse has a narrow range of 
frequencies.



• A photon can be described as a localized oscillation:

At � = 0, Y � = ZY% cos �� 	when	 � < '0														otherwise
At � = 0,Y � = ZY% cos #� 	when	 � < `'0														otherwise

L #′ = Y%2� " cos #�aA
KaA cos # � &�

E(t)

-T +T

t

Another Example



Another Example

L #′ = Y%2� " cos #�aA
KaA cos # � &�

• Trigonometric identity:cos � cos D = 12 cos � − D + cos � + D
L # = Y%2� sin # − # `'# − #′ + sin # + # `'# + #′



Another Example

�		(`b)

� = 4	`b

# = 2�� = 1.571	`bK�

	# 		(`bK�)



Frequency Representation

• Why would we want to represent a function in terms of 
its frequency components?

– Both representations contain the same information

• Physical properties can depend on the frequency

• Examples:

– Maximum frequency for discrete masses�
 = 2�% sin ��2(d + 1)�eSP = 2�%
– Transmission lines:fQgfPQ + hijQ fQgf@Q = 0 where kl ≈ −��� n′
– Speed of light depends on wavelength: � = `/� �


