PURDUE D) eparRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 19 — French, Chapter 6
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Midterm Exam:

Date: Thursday, March 13th
Time: 3:00 —10:00 pm
Room: Probably PHYS 112
Material: French, chapters 1-8



Fourier Analysis

Wave equation:
0%y

1 0%y

0x2  v2 Jt2

Boundary conditions att = 0:
y(0,t) =y(L,t)=0
Normal modes of oscillation:

Wn

Wavelengths of normal modes:
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Fourier Analysis

* Normal modes of oscillation:
nmx

Vn (X, t) = sin (T) cos(w,t)

e General solution:

oo

X
y(x,t) = z a, sin (T) cos(w,t — ay)
n=1

 The parameters a,, and a,, are determined from initial
conditions. Att = 0, we can write

y(x,0) = u(x) = i a', sin (?)
n=1

where a,, = a, cos .



Fourier Analysis

e Fourier’s method:

2t (knx
a, = —f sin| — Ju(x)dx
0 L

 Example: (French 6-12):

_

— The string has tension T and mass per unit length u
— If the string is released from rest, what is y(x, t)?



Example

/
_

* Initial displacement is described by the function
2hx

L
Zh(l—%) L/2 <x<L

O0<x<L/2
u(x) =

* The string is released from rest, so v(x) = 0.
* That must mean that a,, = 0 and so a,, = a,,.



Example

* Fourier coefficients:

2k krmx
akzzf sin 5 u(x)dx
0

_ZJL/Z_ knx\ [ 2hx J
) sin | — — | dx

2 (v [knx
+ —J sin (—) (2h(1 —x/L)) dx
L

4h (L2 (knx) ; 4h (L (knx) et 4h (L (knx) ;
= —= XSIn| —— X ——= XSIn| —— X — SIN|{ — X

e This is getting messy...
e Don’t get your table of integrals just yet...
e Think about the symmetry of the problem.



Example

7
k=1
Z
%
k=2
7
7
k=3
%

Integrals with even values of k will be zero.

— This is because sin(kmx /L) is odd but u(x) is even when reflected
about the point x = L/2.

When k is odd, we can just double the value of the integral from
0toL/2.



Example

e When k is odd,

2 (¥ [(knx 4 (L2 (krx\ (2hx
ay = Zj sin | —— u(x)dx = Zf sin{ — T dx
0 0

_ 8h L/? . [ knx q
=72 o X sin T X

e Now get your table of integrals:
. X 1 .
91) stm(ax)dx = -2 cosax + —-SIn ax
a a

- 8h Lx kmx\ 8h L* [(krx\|L2
R Tk L )T ez L
sh

— k%2




Example
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Example
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Example
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aq F = 0.8106 h
8h
as = _W = —0.0901 h
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Example

u.:a: 3h
i a, = — = 0.8106 h
0.2
C 8h
u-1/\ . _W = —0.0901h
o ac = — 0.0324 h
u > 7 25x2 '
0.4
_ = — = —0.0165 h
0.2 " 491
_u 3:| 1 11 | 1111 | 1111 | | I .| | I 111 | I 111 | 1 11 1 | I 111 | 1 111 | 1 11 1
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Example

ﬂ.3: 8h
' a, = — = 08106 h
0.2
C 8h
u-1/\ . _W = —0.0901h
o a: = = 0.0324 h
B > 2512 .
0.4
B = — = —0.0165 h
0.2 v 49
_u 3:| 1 11 | 1111 | 1111 | | I .| | I 111 | I 111 | 1 11 1 | I 111 | 1 111 | 1 11 1 — 0_0100 h

a:
0 01 02 03 04 05 06 07 08 09 7 81m2

—



k=1
knv
Wy = —
)
Period of lowest frequency mode:
1 2L
T = =
Vi U
Aftertimet =T/2=L/v, —1 because a; # 0
00 only when k is odd.

y(x,t) = z a; sin (nllix) cos(mk)

k=1
= —u(w)

The string maintains its triangular szhase! However, the motion is
t

more complex than just u(x) cos (T



Wave Propagation

The wave equation:

0%y 1 0%y

0x2 v2 ot2
We worked out solutions that satisfied specific
boundary conditions.

A general solution is any function that is of the form
y(x,t) = f(x £ vt)
Are these two pictures compatible?



Wave Propagation

e Solutions for normal modes:

Nx
v, (x,t) = sin (T) cos(w,t)
TNnv
W, = —
" L
e Trigonometric identity:

1 sin(a + ) + sin(a — )]

sina cosf = 2[

* This gives,
Vn(x,t) == [sm (@ + Wy ) + sin (nLLx — a)nt)]



Wave Propagation

Vn(x,t) = 2 [sm (ﬁ + wnt) + sin (? — wnt)]

Write this as

v (x,t) = L [sm(k(x + vt)) + sin(k(x — vt))]
nm

L
This is the equation for two sine-waves moving in
opposite directions.

The text refers to these as “progressive waves”.

The “standing waves” that satisfy the boundary
conditions are the superposition of “progressive waves”
that move in opposite directions.



Wave Propagation

 Waves can propagate in either direction.

e Easiest to visualize in terms of a pulse, or wave
packet:

%_/T %
.
Z -

e |f this disturbance is far from the ends, the effect is
the same as letting L — oo




Wave Propagation

_(MIX 0,
y(x,t) = z a,, sin (T) cos(w,t — ay,) RN
n=1 \_/ JQ
In general, we could write '0\\0
- o mmx
y(x, t) = z a, sin (T) cos(w,t — a;,)
"=,
nmx
+ z b,, cos (T) cos(wnt — ay)
n=1

In the limit where the disturbance is very far from either boundary, the
Fourier sine transform is:

B(k) = J u(x) sin(kx) dx
Similarly, we can define the Fourier cosine transform:

A(k) = joou(x) cos(kx) dx



Wave Propagation

B(k) = Joou(x) sin(kx) dx
Similarly, we can define the Fou_roioer cosine transform:

A(k) = joou(x) cos(kx) dx
The original function is represe_n(:coed by:

u(x) = ljooA(k) cos(kx) dk + 1 jooB (k) sin(kx) dk
T Jo T Jo

If A(k) = A(—k) and B(k) = —B(—k) then we can make this more
symmetric:

u(x) = %JOOA(k) cos(kx) dk + %foo B(k) sin(kx) dk



Wave Propagation

 To make this even more symmetric we can change
slightly the definition of A(k) and B(k):
rOO

B(k) = \/T_nJ_oou(x) sin(kx) dx
1 ®
A(k) = \/T_nj_wu(x) cos(kx) dx

e Then,

1 1 (” _
E j_ooA (k) cos(kx) dk + \/ﬁ f_ooB (k) sin(kx) dk

u(x) =



Wave Propagation

* Previously, we interpreted the coefficients a,, as the
amplitude of the normal mode with frequency w,
— wavelength A,, = 2L/n
— wavenumber k,, = 2n /A, = nn/L

* Now, we interpret A(k) and B(k) as the amplitude
for harmonic waves with wavenumbers between k
and k + dk.

* |t can be important to decompose a pulse into its
frequency components because in real materials, the
nature of wave propagation can depend on the
frequency.



Example

Consider a pulse that has a Gaussian shape:

N
1

g(x) :\/TTT

e—xz/z
Special case:

— Peak positionisatx =0

— Width of the peakiso =1

Other Gaussian functions can be transformed into this
special case by linear change of variables.

What is the continuous Fourier transform?



Example

1 0.0)
Bk=—f x) sin(kx) dx
(k) NeT _Oog( ) sin(kx)
* The Gaussian function g(x) is an even function:
g(x) = g(—x)

e The function sin(kx) is an odd function:
sin(—kx) = — sin(kx)

* This integral must vanish...
B(k)=0



Example

1 co
A(k) = Ef g(x) cos(kx) dx
1 00)
=— | e **/2cos(kx)dx
21 J)_,

e From your table of integrals:

© T
2 2
f e~ %" coshxdx = |—e~b"/4a
o \]a

 Inthiscase,a=1/2andb =k

1 2 1 2
A(k) = —X VZT[B_k /2 — g~ k%/2
21T V2T

e This is a Gaussian distribution of wavenumbers k = w/v.



Notes about Fourier Transforms

For the Gaussian pulse,

—x?/20%

e

(x) =
7 V2mo
The amplitudes of the frequency components are:
_ 1 k2522 —
A(k) = 5=¢ , B(k) =0
When the pulse is narrow, o < 1, then the exponent
in A(k) is large for a large range of k

— Since w = v/k, a narrow pulse has a wide range of
frequency components.

Conversely, a wide pulse has a narrow range of
frequencies.



Another Example

A photon can be described as a localized oscillation:

E(t) 4
E,
-T 0 +T

Ey cos(wt) when |t| < T

i ®) 0 otherwise
Att =0,E(x) = {Eo cos(kx) when lel <cT
0 otherwise

EO cT
A(k") =— cos(kx) cos(k'x) dx
(k) == _cosCkx) cos(k'x)



Another Example

A(k") = cos(kx) cos(k'x) dx

EO cT
V 27-[ f_cT

e Trigonometric identity:

cosacosfB = %(COS(CX — B) + cos(a + B))
E, sin((k — k’)cT) sin((k + k’)cT)
Tl k=K T k+k

A(k') =



Another Example
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Frequency Representation

Why would we want to represent a function in terms of
its frequency components?

— Both representations contain the same information
Physical properties can depend on the frequency
Examples:

— Maximum frequency for discrete masses

_ nm
Wy, = 2Wq Sin 2N + 1)

Wmax — 20‘)0
— Transmission lines:

2 2
OW L XYV _ o where XY ~ —w?L'C’

dx? w?2 O0t?

— Speed of light depends on wavelength: v = ¢/n(1)



