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Wave Equation

������ = 1�� ������
• Speed of propagation depends on the medium:

– String with tension 	 and linear mass density 
:� = 	 	/

– Sound waves in air:� = 
�/�
– Electrical transmission lines:

� = 1���′ ≈ ���



Boundary Conditions

• The boundary conditions at � = 0 and at � = �
determine what types of functions describe the 

normal modes of oscillation.

– Both ends are fixed (no movement possible):� 0, � = � �, � = 0�
� = 1
� = 2
� = 3�� � = sin �!��



Frequencies of Normal Modes

�� �, � = �� � cos $�� + &�
�� � = sin �!�� = sin '��

• Second derivatives:������� = −$����������� = −'����
• Substitute into the wave equation:)*+),* = -.* )

*+)/* �		$�= '�� = �01 23



Normal Modes of Oscillation

• Now we know all the normal modes of oscillation:�� �, � = sin �!�� cos($�� + &�)
• The system is linear, so any function of the form:

� �, � =67�	��(�, �)�
is also a solution, where 7� are real numbers.

• In particular, at � = 0, the initial configuration of the string is 
described by

� �, 0 =67�� sin �!�� cos &�
�8 �, 0 = −67�$�� sin �!�� sin &�



Initial Conditions

� �, 0 =67�� sin �!�� cos &� =67�� sin �!����8 �, 0 = −67�$�� sin �!�� sin &� =69��� sin �!��
• If we know the initial shape of the string, and its time 

derivative at � = 0, how can we determine the coefficients 7��
and 9�� ?

• From these we could calculate 7� and &� and then we would 
have a solution.

• Consider the special case where the velocity is initially zero…

– Then 9�� = −7�$� sin &� = 0 so we then must have &� = 0.



Fourier Analysis

• Simple case when initial velocity is zero:

� �, 0 =67�� sin �!��
• If the initial shape was � �, 0 = ;(�), how 

do we calculate 7�?

• Let’s first look at a similar problem…



Fourier Analysis

• Suppose we have a vector �< in 3-dimensioal space.

• If we establish a set of coordinate axes then we have unit 

vectors =̂, ?,̂ '@ along the x-, y-, and z-axes.=̂ ∙ =̂ = 1							=̂ ∙ ?̂ = 0								=̂ ∙ '@ = 0,   etc…

• Now we can write:�< = �,=̂ + �+?̂ + �B'@
• �,, �+ and �B are real numbers.

• We can calculate them using�, = �< ∙ =̂�+ = �< ∙ ?̂�B = �< ∙ '@



Fourier Analysis

• Suppose we have a vector �< in n-dimensional space.

• Suppose we have an orthonormal basis CD�…CD� ∙ CDE = δ�EG�E = H1		I;	� = J0		I;	� ≠ J
• We can write �< in the form

�< = �-CD- + ��CD� + �LCDL +⋯ = 6�ECDEE
• We can calculate �� using

�< ∙ CD� =6�ECDE ∙ CD�E =6�EE GE� = ��



Fourier Analysis

• Back to the initial value problem:

– We have an initial function ;(�) that we can write

; � =67�� sin �!��
and we need to calculate the real numbers 7�…

• The functions sin �0,1 are sort of like a set of 

basis vectors…  are they orthonormal?

– How do we define the dot product in this case?



Fourier Analysis

• In this case we define the “dot product” as an integral:

; ∙ �� = N ;(�) sin �!�� O�1
P

• Are �� � orthogonal?

�� ∙ �E = N sin �!�� sin J!�� O�1
P= 12N cos � −J !�� O�1

P− 12N cos � + J !�� O�1
P

= 0 when � ≠ J



Fourier Analysis

• But when � = J,
�� ∙ �E = N sin �!�� sin J!�� O�1

P= 12N cos � − J !�� O�1
P − 12N cos 2�!�� O�1

P= 12N O�1
P = �2

• So we can write �� ∙ �E = �2	G�E

0



Initial Value Problem

; � =67�� sin �!��
�� ∙ ; = N ; �1

P sin �!�� O�
= N 67EE sin J!��1

P sin �!�� O�
=67EE 	�E ∙ �� = �2	67EE 	GE� = �27�



Initial Value Problem

; � =67�� sin �!��
7� = 2�N ;(�)1

P sin �!�� O�
Now we know how to calculate 7� from the 

initial conditions…  we have solved the initial 

value problem.



Example

• How to describe a square wave in terms of normal 

modes: C � = H+1	when	0 < � < �/2−1	when � 2⁄ < � < �
7� = 2�N sin �!�� O�1/�

P − 2�N sin �!�� O�1
1�= 2�! 1 − cos �!

7- = V0, 7L = VL0, 7W = VW0, ⋯



Example

7� = 2�! 1 − cos �!
7- = V0, 7L = VL0, 7W = VW0, ⋯7� = 0, 7V = 0, 7X = 0,⋯

�

The initial shape doesn’t really satisfy the 

boundary conditions �(0) = �(�) = 0, but 

the approximation does.



Other Examples

• Consider an initial displacement in the middle of the 

string:

; � = Y 0		when	� < 2�/51		when		2�/5 < � < 3�/50		when		� [ 3�/5
Let’s assume � = 1 and � = 1



Example

7� = 2�N sin �!�� O�L1/W
�1/W

• Now we know the first 30 values for  7�…  we’re done!



Example

• Is this a good approximation?

• A good description of sharp features require high 
frequencies (large �).



Example

• The complete solution to the initial value problem is

� �, � =67�� sin �!�� cos$��
$� = �!� 	


• What does this look like as a function of time?



Example



Another Example

• Consider a function that is a bit smoother:

; � =



Example

• The integrals for the Fourier coefficients are of the 

form:

\ sin �0,1 O�]̂
or \ � sin �0,1 O�]̂

• These can be solved analytically, but it is a lot of 

work…



Example

• The initial shape of the approximation with 

N=30 is better than for the square pulse.



Example



Final Example

• An even smoother function:

; � =



Example

• The integrals for the Fourier coefficients are of the 

form:

\ sin �0,1 O�]̂
or \ � sin �0,1 O�]̂

or \ �� sin �0,1 O�]̂
• These can be solved analytically, but it is a lot of 

work…



Example

• The initial shape of the approximation with 

N=30 is even better than the triangular pulse…

Exact
Approximate with N=30



Example


