

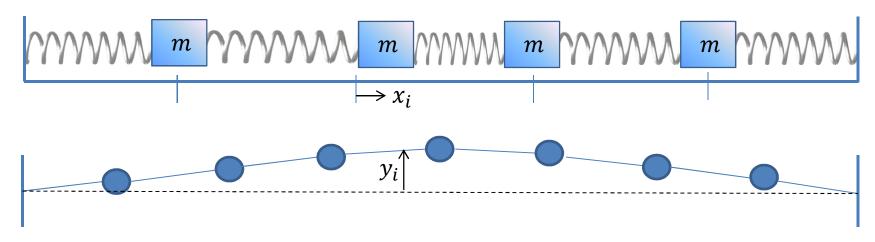
Physics 42200 Waves & Oscillations

Lecture 16 – French, Chapter 6

Spring 2014 Semester

Matthew Jones

Continuous Systems



$$m \ddot{y}_n = F_n = \frac{T}{\ell} [(y_{n+1} - y_n) - (y_n - y_{n-1})]$$

In the limit $m/\ell \to \mu$ this becomes the wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

where $v = \sqrt{T/\mu}$.

Other Continuous Systems

- 1. Longitudinal waves in a solid elastic rod
- 2. Longitudinal waves in a compressible gas
- 3. Transmission lines (electrical example)

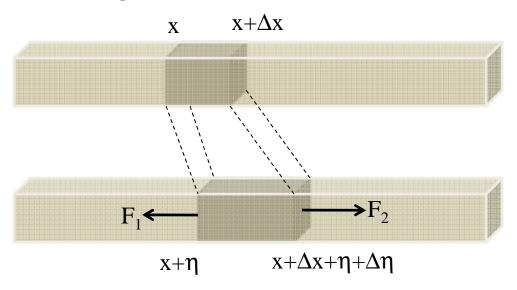
Based on our understanding of the microscopic properties of each system, we can derive the wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

Which physical properties determine v?

Other Continuous Systems

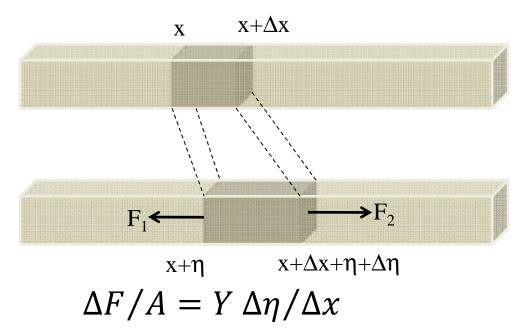
Longitudinal waves in a solid rod:



Notation:

- x labels which piece of the rod we are considering, analogous to the index n when counting discrete masses.
- η quantifies how much the element of mass has moved.
- Recall that strain was defined as the fractional increase in length of a small element: $\Delta \eta / \Delta x$
- Stress was defined as $\Delta F/A$
- These were related by $\Delta F/A = Y \Delta \eta/\Delta x$

Longitudinal Waves in a Solid Rod



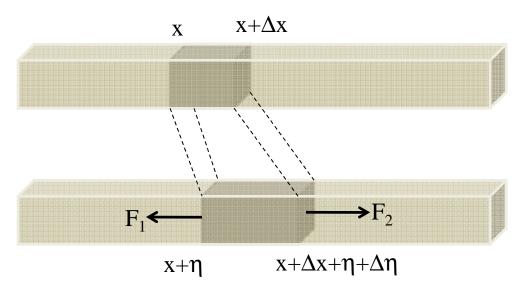
Force on one side of the element:

$$F_1 = AY \Delta \eta / \Delta x = AY \partial \eta / \partial x$$

Force on the other side of the element:

$$F_2 = F_1 + AY \frac{\partial^2 \eta}{\partial x^2} \Delta x$$

Longitudinal Waves in a Solid Rod



Newton's law:

$$m\ddot{\eta} = F_2 - F_1$$

$$F_2 - F_1 = AY \frac{\partial^2 \eta}{\partial x^2} \Delta x = \rho A \Delta x \frac{\partial^2 \eta}{\partial t^2}$$

Wave equation:

$$\frac{\partial^2 \eta}{\partial x^2} = \frac{\rho}{Y} \frac{\partial^2 \eta}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2}$$

What is the solution for a rod of length L?

$$\frac{\partial^2 \eta}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2} \qquad v = \sqrt{Y/\rho}$$

- Boundary conditions:
 - Suppose one end is fixed

$$\eta(0)=0$$

$$F = AY \partial \eta / \partial x$$
$$\frac{\partial \eta}{\partial x_{x=L}} = 0$$

Look for solutions that are of the form

$$\eta(x) = f(x)\cos\omega t$$

$$\eta(x) = f(x)\cos\omega t$$

- Inspired by the continuous string problem, we let $f(x) = A \sin(kx)$
- Derivatives:

$$\frac{\partial^2 \eta}{\partial x^2} = -k^2 \eta$$

$$\frac{\partial^2 \eta}{\partial t^2} = -\omega^2 \eta$$

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2} \Rightarrow k = \frac{\omega}{v}$$

$$f(x) = A \sin\left(\frac{\omega x}{v}\right)$$

- This automatically satisfies the boundary condition at x=0.
- At x = L, $\partial \eta / \partial x = 0$:

$$\frac{\partial \eta}{\partial x_{x=L}} \propto \cos\left(\frac{\omega L}{v}\right) = 0$$

- This means that $\frac{\omega L}{v} = (n \frac{1}{2})\pi$
- Angular frequencies of normal modes are

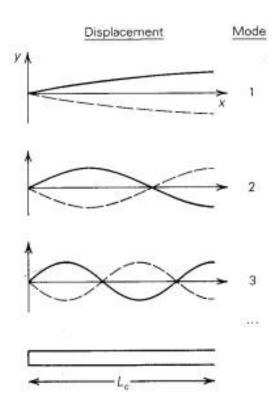
$$\omega_n = \frac{\pi}{L} (n - \frac{1}{2}) \sqrt{Y/\rho}$$

Frequencies of normal modes are

$$\nu_n = \frac{n - 1/2}{2L} \sqrt{Y/\rho}$$

Frequencies of normal modes are

$$\nu_n = \frac{n - 1/2}{2L} \sqrt{Y/\rho}$$



Lowest possible frequency:

$$\nu_1 = \frac{1}{4L} \sqrt{\frac{Y}{\rho}}$$

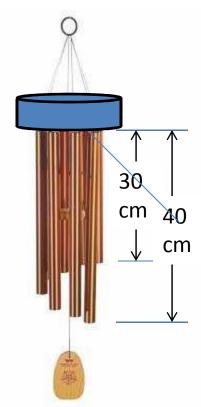
Frequencies of Metal Chimes

- Suppose a set of chimes were made of copper rods, with lengths between 30 and 40 cm, rigidly fixed at one end.
- What frequencies should we expect if

$$Y = 117 \times 10^9 \text{ N} \cdot m^{-2}$$

 $\rho = 8.96 \times 10^3 \text{ kg} \cdot m^{-3}$

$$\nu_1 = \frac{1}{4L} \sqrt{\frac{117 \times 10^9 \text{ N} \cdot m^{-2}}{8.96 \times 10^3 \text{ kg} \cdot m^{-3}}}$$
= 2260 - 3010 Hz
(highest octave on a piano)



Frequencies of Metal Chimes

 If the metal rods were not fixed at one end then the boundary conditions at both ends would be:

$$\frac{\partial \eta}{\partial x} = 0$$

Allowed frequencies of normal modes:

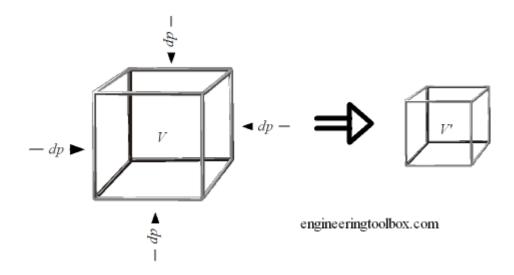
$$u_n = \frac{n}{2L} \sqrt{Y/\rho}$$
Open at Both Ends
Harmonic

 1^{st}
 $2L$

Frequency f
 2^{nd}

Harmonic

 2^{nd}
 3^{nd}
 3^{nd}
 3^{nd}



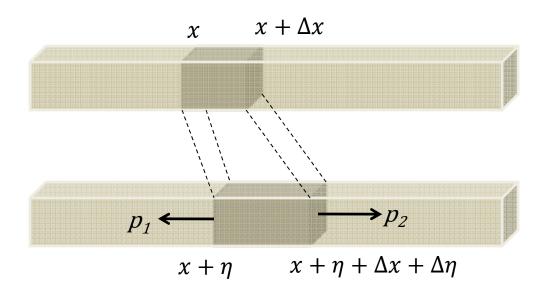
- Increased pressure on a volume of gas decreases its volume
- Bulk modulus of elasticity is defined

$$K = -V \frac{dp}{dV}$$

- Equations of state for a gas:
 - Ideal gas law: pV = NkT
 - Adiabatic gas law: $pV^{\gamma} = constant$
- In an adiabatic process, no heat is absorbed
 - Absorbing heat would remove mechanical energy from a system
 - Propagation of sound waves through a gas is an example of an adiabatic process
- Bulk modulus calculated from equation of state:

$$V^{\gamma}dp + \gamma p V^{\gamma - 1}dV = 0$$
$$\frac{dp}{dV} = -\gamma p/V$$
$$K = -V \frac{dp}{dV} = \gamma p$$

• By analogy with the solid rod, we consider an element of gas at position x of thickness Δx that is displaced by a distance $\eta(x)$:



• Wave equation:

$$\frac{\partial^2 \eta}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \eta}{\partial t^2}$$

- For a sold rod, $v = \sqrt{Y/\rho}$
- For a gas, $v = \sqrt{K/\rho} = \sqrt{\gamma p/\rho}$
- Changes in pressure and density are very small compared with the average pressure and density.
- At standard temperature and pressure, air has

$$\gamma = 1.40$$

$$p = 101.3 \text{ kPa}$$

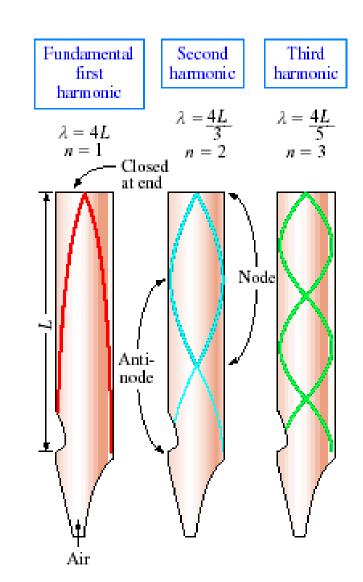
$$\rho = 1.2 \text{ kg/m}^3$$

$$v = \sqrt{\frac{(1.40)(101.3 \times 10^3 N/m^2)}{(1.2 \text{ kg/m}^3)}} = 343 \text{ m/s}$$

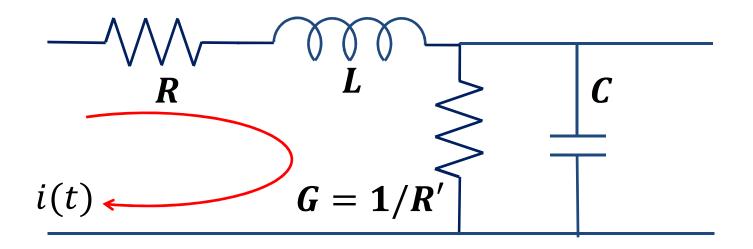
The Physics of Organ Pipes

Resonant Cavities

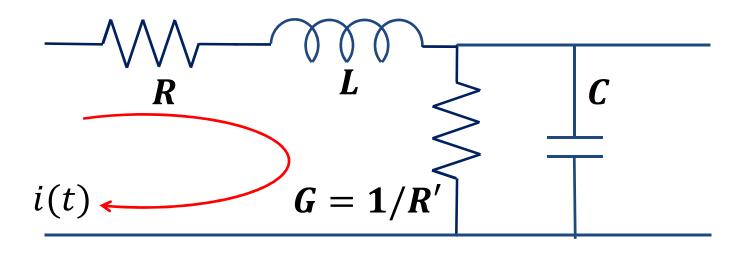
- Air under pressure enters at the bottom
 - Entering air rapidly oscillates between the pipe and the lip
 - The lower end is a pressure anti-node
- Top end can be open or closed
 - Open end is a pressure node/displacement antinode
 - Closed end a displacement node/pressure anti-node



• First, consider one "lump" of a circuit:



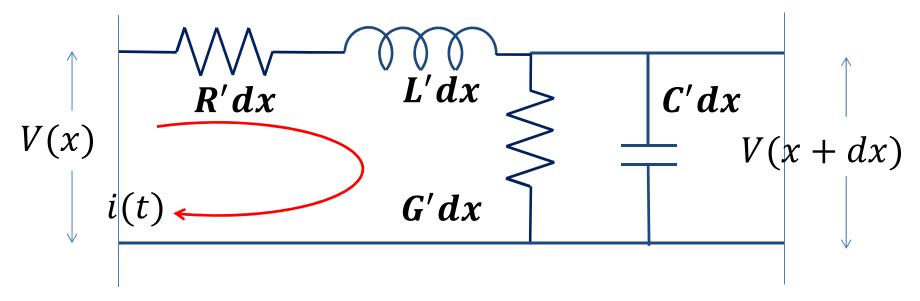
• It is convenient to describe the resistor that is in parallel with the capacitor in terms of its conductance, G = 1/R'.

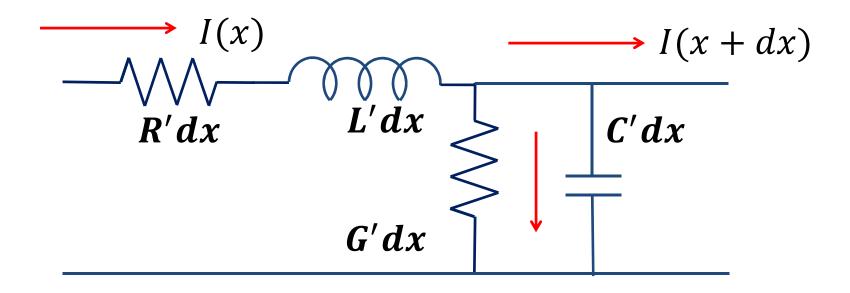


Calculate the total impedance of the lump:

$$Z_R = R$$
 $Z_L = i\omega L$
 $X = R + i\omega L$
 $Z_C = \frac{1}{i\omega C}$
 $X = G + i\omega C$
 $Z_G = 1/G$

- Suppose the resistance, inductance, capacitance and conductance were distributed uniformly with length:
 - Let R' be the resistance per unit length, L' be the inductance per unit length, etc...
- Consider the voltage on either side of the lump:



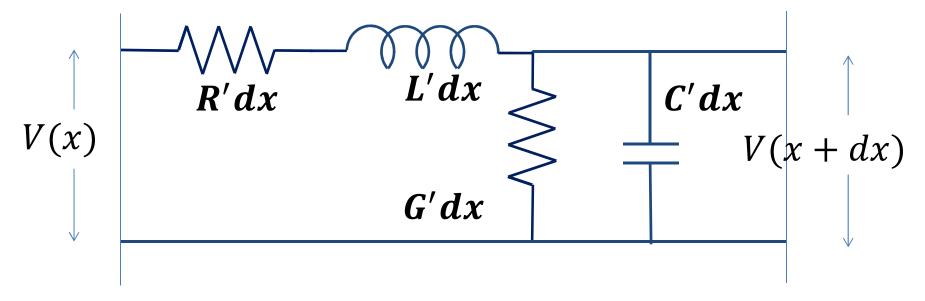


Current flowing through G' and C' is

$$\Delta I = \frac{V(x)}{Z_{G'+C'}} = V(x)Y$$

$$I(x + dx) = I(x) - V(x)Y$$

$$\frac{\partial I}{\partial x} = \frac{I(x + dx) - I(x)}{dx} = -V(x)Y$$



Voltage drop across the lump:

$$\frac{V(x + dx) = V(x) - I(x)X}{\partial X} = \frac{V(x + dx) - V(x)}{\partial x} = -I(x)X$$
$$\frac{\partial^2 V}{\partial x^2} = -\frac{\partial I}{\partial x}X = XYV(x)$$

When we assume that the voltage is of the form

$$V(x,t) = V(x)e^{i\omega t}$$
$$\frac{\partial^2 V}{\partial t^2} = -\omega^2 V(x)$$

• Using the previous result, $\frac{\partial^2 V}{\partial x^2} = XY V(x)$ we get:

$$\frac{\partial^2 V}{\partial x^2} + \frac{XY}{\omega^2} \frac{\partial^2 V}{\partial t^2} = 0$$

- Does this resemble the wave equation?
 - Expand out $XY = (R' + i\omega L')(G' + i\omega C')$
 - When R' and G' are small, which is frequently the case then $XY \approx -\omega^2 L'C'$

Wave equation:

$$\frac{\partial^2 V}{\partial x^2} = L'C' \frac{\partial^2 V}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 V}{\partial t^2}$$

Speed of wave propagation is

$$v = \frac{1}{\sqrt{L'C'}}$$