PURDUE D) eparRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 13 — French, Chapter 5
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The Eigenvalue Problem

If Ais an n X n matrix and U is a vector, find the
numbers A that satisfy
Au=2\u
Re-write the equation this way:
A-2Du=0
This is true only if
det(A—AI) =0

For a 2 X 2 matrix, this is:

a—A b | _,. AN
; d—/l_(a Ad—-—A)—bc=0
This is a second order polynomial in A. Use the
qguadratic formula to find the roots.



The Eigenvalue Problem

The eigenvectors are vectors U; such that
(A—A;Du; =0
There are n eigenvalues and n eigenvectors
If U; is an eigenvector, then au; is also an eigenvector.

Sometimes it is convenient to choose the eigenvectors so
that they have unit length:
u;-u; =1
Eigenvectors are orthogonal:
u;-u; =0 when i #j

An arbitrary vector ¥ can be written as a linear
combination of the eigenvectors:
6 = ali\ll —+ azi\lz + .-



A Circuit with One Loop




A Circuit with Two Loops
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di, 1(
Ldtl CJ(ll_lz)dt=O

di, 1/, 1. .
Ldt Cledt_Ef(lz_ll)dt=O




Example

L L
U000 —
4o/c o/o—
d’i .
5+ (W) (i — i) = 0
d?i,

(wo)z(Ziz — i) =0



Normal Modes of Oscillation

 What are the frequencies of the normal modes of

oscillation?
— Let 1(t) = L cos wt
d?i7 9
— Then 15z w“1(t)
e Substitute into the pair of differential equations:
(~w? + (wg)?)iy — (wo)?iz = 0
(—0? + 2(wp)?)iz — (wo)%iy = 0

e Write it as a matrix:

(600)2 — w? —(wo)z 11\ _
( —(wg)? 2(wg)? — a)2> (iz) =0




Eigenvalue Problem

(wg)* — w? —(wp)? (i1) — 0
—(wp)? 2(wp)? — w? ) \l2
e For simplicity, let 1 = w? and calculate the determinant:

2 . 2
(a_)(a)o)z/l Z(a)(oa))g)_ 2| =@ (00)) (A = 2(w)?) — (wp)*

— /12 — 3).((1)0)2 + ((1)0)4 =0
e Roots of the polynomial:

1= (@0)? £ 59ag) — &(wo)?

@ = (@0 (3 if)




Eigenvalue Problem

* The eigenvectors are obtained by substituting in each
eigenvalue.

— When w? = (wg)* (3+2\/§)

(wo)? (-1 — V5 —2 1) _
2 < _2 1_\/§>(iz)_0

. (1 —ﬁ> .

i{ = > is

— First normal mode of oscillation:

g, =A (1 _2\/5) cos(wt + a)




Eigenvalue Problem

* The eigenvectors are obtained by substituting in each
eigenvalue.

— When w? = (wg)* (3_2—\@)

(wo)? —1++/5 —2 1) _
2 ( —2 1+\/§>(i2)_0

{1+
= (125),

— Second normal mode of oscillation:

g, =B (1 +2\/§) cos(w,t + )




Eigenvalue Problem

 The original “coordinates” are the sum of the normal
modes of oscillation:
i1(t) = A(l — \/E) cos(wyt + a) + B(1 + V5) cos(w,t + B)
i,(t) = 2Acos(w,t + a) + 2B cos(w,t + B)
 The constants of integration can be chosen to satisfy
the initial conditions
— For example, suppose thati;(0) =i, andi,(0) =0

~ThenA=—B,2A=i, P A=2B=-2



Two Loop Circuit
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Forced Coupled Circuit

* If the two loops were driven with a sinusoidal voltage
source: L I

21121

 Resonance would occur at the frequency of each
normal mode: 3 ++/5
w?* = (wo)z ( )

2



One Mass

Consider one mass with two springs:
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F = —2kx
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Two Masses

Consider two masses with three springs:
PR YW
i i

F]_ — —kx1 — kx1 + sz — k(xz — le)
FZ — kx1 — ka — ka — k(x1 — sz)




Three Masses

Consider three masses with four springs:

mvww . N\mmwv\,

F]_ — —kx1 — kx1 + sz — k(xz — le)
Fy = —k(x; —x1) — k(x; — x3) = k(%1 — 2x3 + x3)
F3 — _ka — kXB + sz — k(xz — ZXB)




Four Masses

\/‘/‘/‘\/\/\/\A, i PV VWi VAW e “/‘/W\/\AJ

Fi = —kxy —kx; + kx, = k(xy, — 2x1)
—k(xz —x1) — k(% — x3) = k(xq — 2x3 + X3)
—k(x3 —x3) —k(x3 —x4) = k(% — 2x3 + x4)

Fp = —kx, —kxy + kxy = k(x3 — 2x,)

e This pattern repeats for more and more masses.

F
ik

e Except at the ends,
Fi = —kQe; —x;-1) — k(x; — x341) = k(-1 — 223 + X341)

e Equations of motion:
mix; —k(x;_1 —2x; +x;4.1) =0



Many Coupled Oscillators

m¥; — k(x;_1 — 2%; + x41) = 0
% + 2(wo)?x; — (W) (xj—1 + Xj41) = 0
* Apply the same techniques we used before:
— Suppose x;(t) = A; cos wt
— Then ¥;(t) = —w?A4; cos wt
(—w? + 2(wg)*)A; — (W)*(Aj—1 + Aj41) =0
Ai_g + A1 —w? + 2(wo)?
4; (wp)?
* Guess at a solution:
A, = Csin(nAf8)
e Will this work?




Many Coupled Oscillators

Ap—1+ Aniq _ —w? + 2(wy)?
Ap (wo)?

* Proposed solution:

A, = Csin(nAf)
* Boundary conditions: Ag = Ay4y1 =0
e This implies that (N + 1)A0 = kn

_ nkm
A, = Csin Nt 1

— Cs (n—1Dkm L Cs (n+ 1kn
n=1 T fAnt1 = LS TV s WY

(s nkm kn
- N T 1)\

A‘l’l—l + ATL+1 _ COS kﬂ: . _0)2 + 2(0)0)2
Ay (wop)?



Many Coupled Oscillators

An—l + An+1 kT[ —(1)2 + 2((1)0)2
= 2 COS =
An ((UO)Z

e Solve for w:

w? = 2(wy)? <1 — COS <Nk_|7_T 1))

=4(w0)zsin2( il )

_ km
W, = 2wg Sin 2N+ 1)

* There are N possible frequencies of oscillation.




Many Coupled Oscillators

* The motion of the masses depends on both the
position of the mass (n) and the mode number (k):

_ nkm
Ap = Cysin Nt 1

_ km
Wy = 2Wyq Sin 2N+ 1)

* When all the particles oscillate in the k" normal
mode, the nt" particle’s position is:

Xn i (£) = Ap i cos(wit + )




Many Coupled Oscillators

What do these modes look like?

e Lowest order mode hask = 1...
nm

Xp1(t) = C; sin ) ¢os w4t




Many Coupled Oscillators

e Positions of masses in the second mode:

e Positions for 4 particles in modes k = 1,2,3,4:
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