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Two Coupled Oscillators

• The spring is stretched by 

the amount �� − ��
• Restoring force on 

pendulum A:

�� = −�(�� − ��)

• Restoring force on 

pendulum B:

�� = �(�� − ��)
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Two Coupled Oscillators
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• Add equations for A and B together:
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• Subtract equations A and B:
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Two Coupled Oscillators
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• Normal coordinates:

�� = �� + ��
�� = �� − ��

• Decoupled equations:
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Two Coupled Oscillators

• Decoupled equations:

��� + ��
��� = 0

��� + �′ ��� = 0

• Solutions are

�� � = � cos ��� +  
�� � = ! cos �′� + "

• The variables �� and �� are called “normal 

coordinates”.



Initial Conditions

• Suppose we had the initial conditions:

�� = �� �#� = 0
�� = 0 �#� = 0

• These can be satisfied with  = " = 0:
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• At time � = 0,
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• Now we know that � = ! = ��.



Initial Conditions

• Velocity:

�#� � = −
1

2
���� sin��� −

1

2
���′ sin�

��

�#� � = −
1

2
���� sin��� +

1

2
���′ sin�

��

• Initial conditions are satisfied at � = 0.



Initial Conditions

• Complete solution:
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Coupled Oscillators
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Coupled Oscillators

• This procedure worked, but the problem was very 

simple.  How can we apply this in general?

• Procedure:

1. Construct the set of coupled differential equations

2. Assume solutions are of the form

�/ � = 	�/ cos �� + 0/
3. Substitute into the differential equations

4. Find the values of � that satisfy the resulting matrix 

equation (eigenvalues).

5. Solve for constants of integration 



Coupled Oscillators
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• Second derivatives:
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Coupled Oscillators

• A very important result:

If the matrix equation

123 = 0

for any vector 23, then

det	1 = 0

• You are expected to be able to calculate the 

determinant of an arbitrary  2x2 or 3x3 

matrix!



Coupled Oscillators

• The determinant of the matrix is:
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• Expand the polynomial in 8 = ��:
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Coupled Oscillators

• Eigenvalue problem:
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Normal Coordinates

• The first normal mode of vibration corresponds to the 

first eigenvector:

�3� � = �
1
1
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• The second normal mode of vibration corresponds to the 

second eigenvector:
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• Arbitrary motion:
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• Initial conditions determine constants of integration.



Forced Coupled Oscillator

• What happens when a driving force is applied to one 

of the oscillators?
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• Normal coordinates:

�� = �� + ��
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• Equations of motion:
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• Decoupled equations which we know how to solve.



Forced Coupled Oscillators

• Steady state amplitudes:
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• Motion of individual masses:
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Forced Coupled Oscillators

• Motion of individual masses:
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• Amplitude of steady state oscillations:
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Forced Coupled Oscillators
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Phase reverses when 

crossing each of the 

resonant frequencies.


