1. Show that \(z(t) = ae^{i\omega t} + be^{i\beta e^{i\omega t}} \) can be written as
\(z(t) = re^{i(\omega t + \varphi)} \)
where \(a, b, \alpha, \beta, r, \varphi \) and \(\omega \) are real numbers.

This is easier to think about using phasors or by drawing vectors in the complex plane:

\[
|z(t)| = \sqrt{z^* z} = \sqrt{(ae^{i(\omega t + \alpha)} + be^{i(\omega t + \beta)})^*(ae^{i(\omega t + \alpha)} + be^{i(\omega t + \beta)})}
= \sqrt{(ae^{-i(\omega t + \alpha)} + be^{-i(\omega t + \beta)})^*(ae^{i(\omega t + \alpha)} + be^{i(\omega t + \beta)})}
= \sqrt{(a^2 + ab(e^{i(\alpha - \beta)} + e^{-i(\alpha - \beta)}) + b^2)^{1/2}}
= \sqrt{(a^2 + 2ab \cos(\alpha - \beta) + b^2)^{1/2}}
\]

Recall that
\[
\cos \Theta = \frac{e^{i\Theta} + e^{-i\Theta}}{2}
\]
The phase, φ, can be calculated by considering the case when $t=0$.

In this case,

$$\tan \varphi = \frac{\text{Im} \, z}{\text{Re} \, z}$$

when $t=0$, $z = ae^{i\alpha} + be^{i\beta} = a(cos \alpha + i sin \alpha) + b(cos \beta + i sin \beta) = acos \alpha + bcos \beta + i(asin \alpha + bsin \beta)$

So, $\text{Im}(z) = a \sin \alpha + b \sin \beta$

and $\text{Re}(z) = a \cos \alpha + b \cos \beta$.

Thus, $\tan \varphi = \frac{a \sin \alpha + b \sin \beta}{a \cos \alpha + b \cos \beta}$

If you want to write a formal expression for φ itself, then

$$\varphi = \tan^{-1} \left(\frac{a \sin \alpha + b \sin \beta}{a \cos \alpha + b \cos \beta} \right)$$
2. Although there is no unique way to define the position, $x(t)$, some choices are more convenient than others. In this case, it is convenient to measure $x(t)$ with respect to the equilibrium position of the spring so that the force exerted by the spring vanishes when $x = 0$.

(a)

\[\begin{array}{c}
\text{x} \\
\downarrow
\end{array} \]

\[\begin{array}{c}
L \\
\downarrow
\end{array} \]

x is positive when the spring is compressed and negative when the spring is stretched.

(b) The force exerted by the spring is

\[F(x) = -kx \]

With the mass stuck to the spring,

\[F(x) = m\ddot{x} = -kx \]

So \[m\ddot{x} + kx = 0 \]

or \[\ddot{x} + \omega^2x = 0 \] where \[\omega = \sqrt{\frac{k}{m}} \] .

Solutions are of the form

\[x(t) = A \sin \omega t + B \cos \omega t \]

\[\text{3} \]
At time $t=0$, $x=0$ so $B=0$.

The velocity is $\dot{x}(t) = A \omega \cos \omega t$ and at $t=0$, $\dot{x}(t) = v_0$.

Thus, $A \omega = v_0$ so $A = \frac{v_0}{\omega}$.

The solution is $x(t) = \frac{v_0}{\omega} \sin \omega t$ for $t>0$.
3. When in equilibrium, the net force is zero. Thus
\[F_s - mg = 0 \]
where the sign convention is such that positive forces point up.
The amount the spring has been compressed is \(L-z \) so \(F_s = k(L-z) \), which points up when \(z < L \).
Hence,
\[k(L-z_0) - mg = 0 \]
\[kL - mg = kz_0 \]
So the equilibrium position is
\[z_0 = L - \frac{mg}{k} \]
(b) The free-body diagram looks like this:
\[\begin{array}{c}
F_s = k(L-z) \\
\uparrow \\
\downarrow mg
\end{array} \]
(c) The net force on the mass is
\[F = -mg + k(L-z) = -kz + kL - mg \]
(d) From Newton's second law, \(F = ma \).
But then \(\ddot{z} + \omega^2 z = \frac{kL}{m} - g \neq 0 \), so it is not of the form \(\ddot{z} + \omega^2 z = 0 \).
(e) Suppose that we measure distances with respect to the equilibrium position, \(z_0 \).

Then \(z = z_0 + z' \).

The acceleration is \(\ddot{z} = \ddot{z}' \).

But \(\omega^2 z = \frac{k}{m} z = \frac{k}{m} (z_0 + z') \)

\[
= \frac{k}{m} \left(L - \frac{mg}{k} \right) + \frac{k}{m} z'
\]

So \(\ddot{z} + \omega^2 z = \frac{kL}{m} - g \)

\[
\ddot{z}' + \frac{k}{m} z' + \left(\frac{kL}{m} - g \right) = \frac{kL}{m} - g
\]

Therefore, \(\ddot{z}' + \omega^2 z' = 0 \).

(f) When the spring is uncompressed, \(z = L = z_0 + z' \)

So \(z' = L - z_0 = L - \left(L - \frac{mg}{k} \right) = \frac{mg}{k} \).

Solutions to \(\ddot{z}' + \omega^2 z' = 0 \) are of the form

\[z'(t) = A \sin \omega t + B \cos \omega t \]

When \(t = 0 \), \(\dot{z}' = \frac{mg}{k} \) so \(B = \frac{mg}{\omega k} \).
When \(t = 0 \), \(\ddot{z} = Aw \) but the mass was released from rest, so \(\dot{z}'(t) = 0 \) at \(t = 0 \).

Thus, \(A = 0 \) so the solution is

\[
\dot{z}'(t) = \frac{mg \cos \omega t}{k},
\]

where \(\omega = \frac{k}{m} \).

Expressed in terms of \(z \),

\[
z(t) = L - \frac{mg}{k} + \dot{z}'(t)
\]

\[
= L - \frac{mg}{k} \left(1 - \cos \omega t \right)
\]