

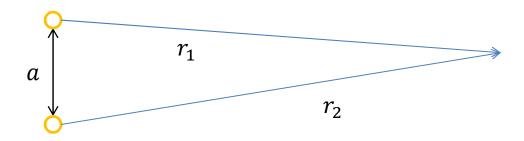
Physics 42200 Waves & Oscillations

Lecture 36 – Interference

Spring 2013 Semester

Matthew Jones

Interference



Two electric fields:

$$\vec{E}_{1}(\vec{x},t) = \vec{E}_{10} \cos(\vec{k} \cdot \vec{x} - \omega t + \xi_{1})$$

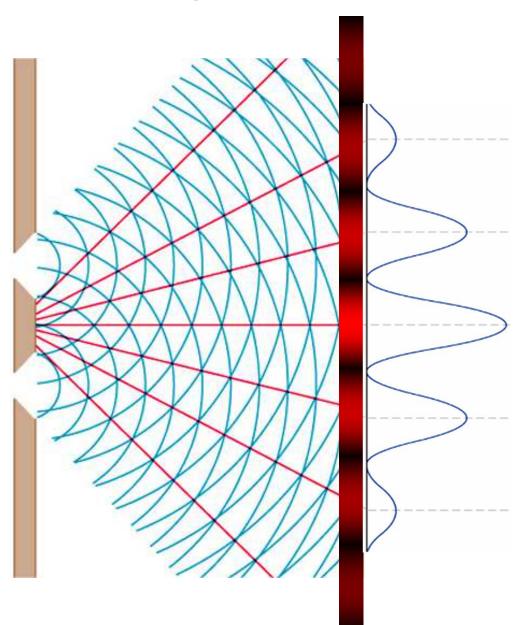
$$\vec{E}_{2}(\vec{x},t) = \vec{E}_{20} \cos(\vec{k} \cdot \vec{x} - \omega t + \xi_{2})$$

• When $\vec{E}_{01} = \vec{E}_{02}$ and $\xi_1 = \xi_2$:

$$I = 2I_0(1 + \cos \delta) = 4I_0 \cos^2 \frac{\delta}{2}$$
$$\delta = k(r_1 - r_2)$$

- Constructive interference when $\delta = 2n\pi$
- Destructive interference when $\delta = (2n + 1)\pi$

Young's Double Slit Experiment



The two slits act as two sources of coherent light.

Today we consider several other ways that light can produce interference effects.

Interference From Thin Films

Important result:

$$\left(\frac{E_r}{E_i}\right)_{\perp} = \frac{n_1 - n_2}{n_1 + n_2}$$

$$\delta_r = 0$$

- external reflection introduces a phase shift of π
- Wavelength in a material with index of refraction n:

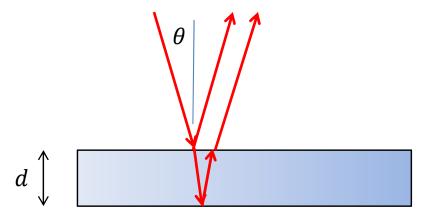
$$\lambda = \lambda_0/n$$

• Number of wavelengths in thickness 2*d*:

$$N = \frac{2dn}{\lambda_0}$$

• Phase difference: $\delta = 2\pi \left(N + \frac{1}{2}\right)$

Interference from Thin Films



Phase difference for normal incidence:

$$\delta = 2\pi \left(\frac{2nd}{\lambda_0} + \frac{1}{2} \right)$$

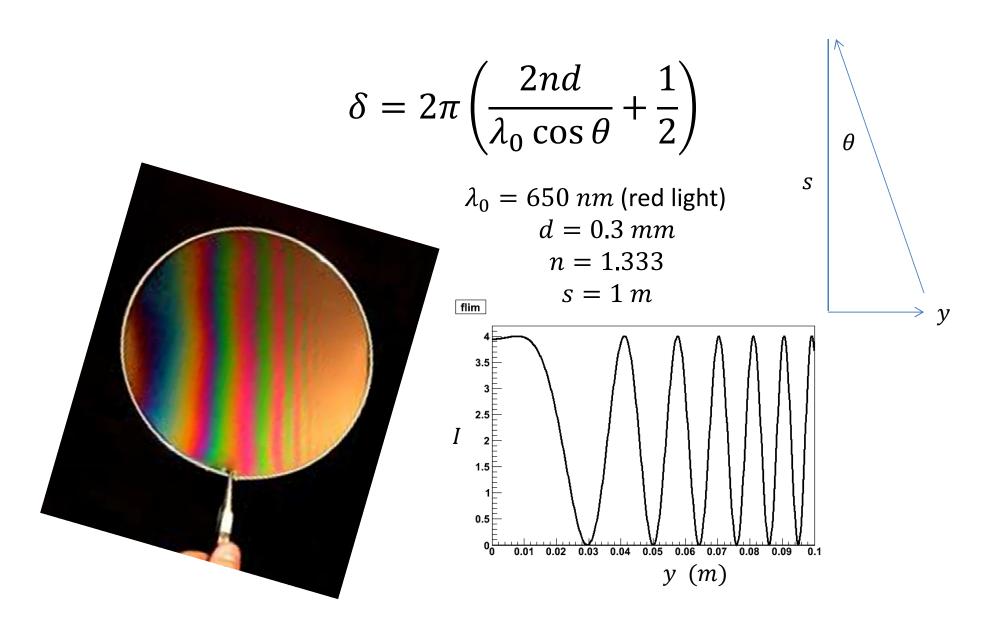
• Phase difference when angle of incidence is θ :

$$\delta = 2\pi \left(\frac{2nd}{\lambda_0 \cos \theta} + \frac{1}{2} \right)$$

• For monochromatic light, bright fringes have $\delta=2\pi m$ and are located at

$$\cos\theta = \frac{nd}{\pi\lambda_0 \left(m - \frac{1}{2}\right)}$$

Interference from Thin Films



Coating a Glass Lens to Suppress Reflections:

 180^{0} phase change at both a and b since reflection is off a more optically dense medium

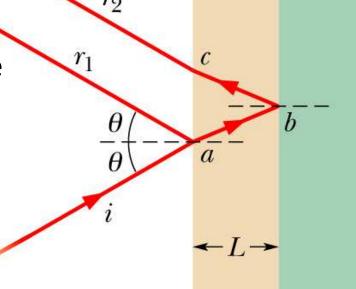
Air MgF_2 Glass $n_1 = 1.00$ $n_2 = 1.38$ $n_3 = 1.50$

How thick should the coating be for destructive interference?

$$2t = \frac{\lambda'}{2}$$
$$t = \frac{\lambda'}{4} = \frac{\lambda}{4n_2}$$

What frequency to use?

Visible light: 400-700 nm



Coating a Glass Lens to Suppress Reflections:

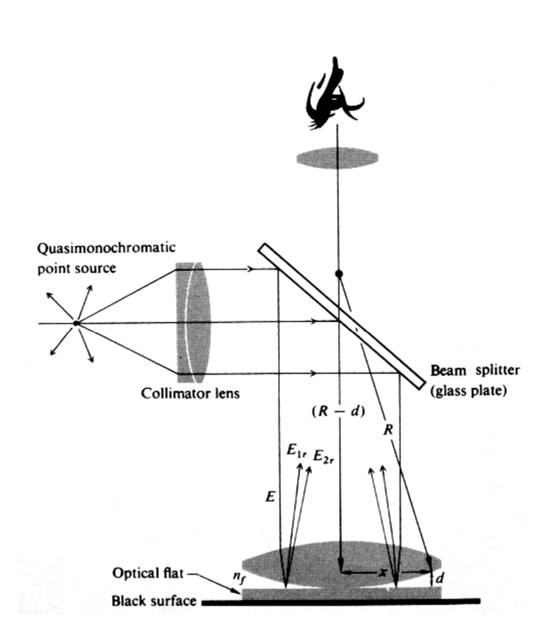
For λ = 550 nm and least thickness (m=1)

$$t = \frac{\lambda}{4n}$$

$$= \frac{550 \text{ nm}}{4 \times 1.38} = 99.6 \text{ nm}$$

- Note that the thickness needs to be different for different wavelengths.
- If the light reflected off the front and back surfaces interferes destructively, then all the energy must be transmitted

Newton's Rings



Why is center dark?

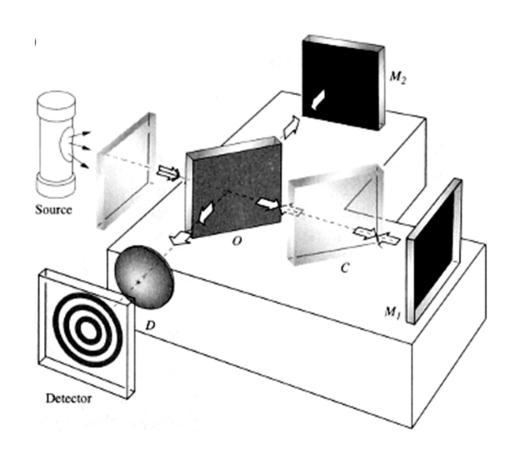
$$x^{2} + (R - d)^{2} = R^{2}$$

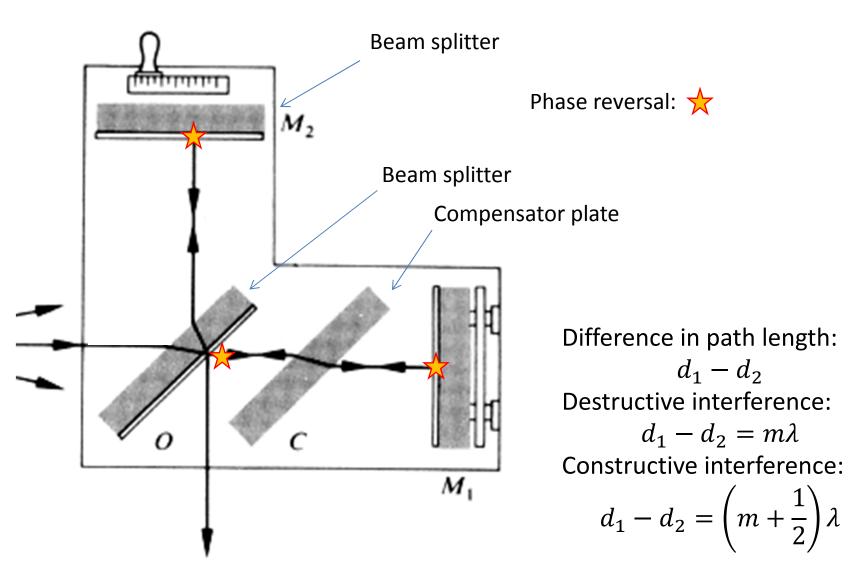
$$\downarrow$$

$$x^{2} = 2Rd$$

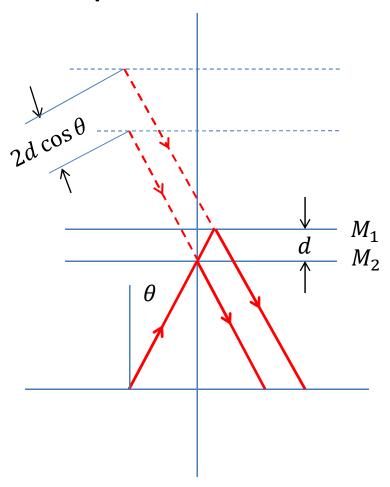
maxima: $2d = (m+\frac{1}{2})\lambda$

$$x^2 = \left(m + \frac{1}{2}\right)R\lambda$$



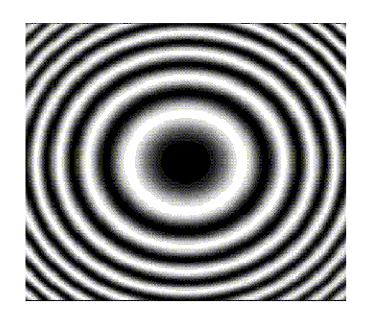


• Equivalent optics:



Bright fringes occur when

$$\delta = 2\pi \left(\frac{2d}{\lambda \cos \theta} + \frac{1}{2} \right) = 2\pi m$$



 How does the position of a fringe change when the path length changes?

$$\frac{2d}{\lambda\cos\theta} = m + \frac{1}{2}$$

$$2d = \lambda\cos\theta\left(m + \frac{1}{2}\right)$$

$$2\Delta d = -\lambda\sin\theta\left(m + \frac{1}{2}\right)\Delta\theta$$

$$\frac{\Delta\theta}{\Delta d} = -\frac{2}{\left(m + \frac{1}{2}\right)\lambda\sin\theta}$$

- Application: Consider two closely spaced wavelengths, λ and λ'
- Bright fringes from one wavelength occur when

$$\frac{2d}{\lambda} = m$$

Bright fringes from the other wavelength occur when

$$\frac{2d}{\lambda'} = m'$$

The two fringes will coincide when

$$\frac{2d}{\lambda} = \frac{2d}{\lambda'} + N$$

 Adjust the position of the movable mirror so that the next set of fringes coincide

$$\frac{2d'}{\lambda} = \frac{2d'}{\lambda'} + N + 1$$

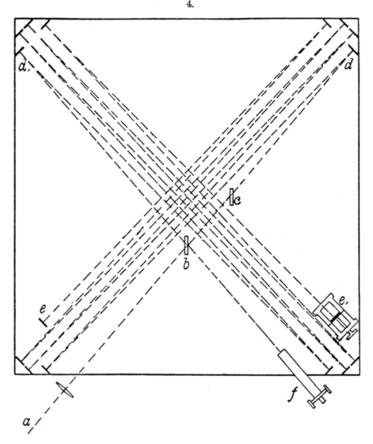
Subtract these:

$$\frac{2d'}{\lambda} - \frac{2d}{\lambda} = \frac{2d'}{\lambda'} - \frac{2d}{\lambda'} + 1$$
$$\lambda' - \lambda = \frac{\lambda \lambda'}{2\Delta d} \approx \frac{\lambda^2}{2\Delta d}$$

For the yellow sodium line,

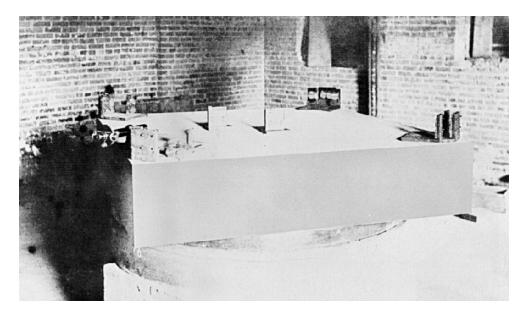
$$\lambda = 588.991 \ nm$$
 $\lambda' = 589.595 \ nm$
 $\Delta \lambda = 0.604 \ nm$
 $\Delta d = \lambda^2 / 2\Delta \lambda = 287,472 \ nm = 0.287 \ mm$

Michelson-Morley Experiment



Time in the direction of the ether:

$$\Delta t = \frac{2w}{c} \left(1 + \frac{v^2}{c^2} \right)$$

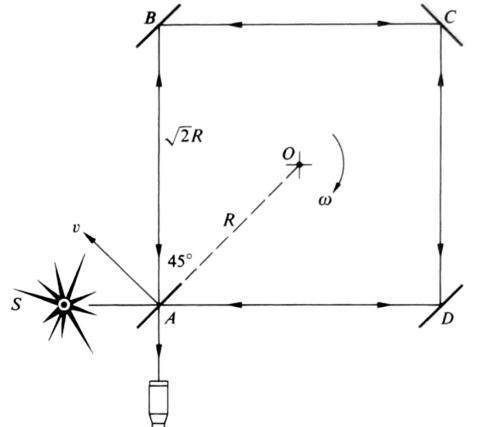


Time perpendicular to the direction of the ether:

$$\Delta t = \frac{2w}{c} \left(1 + \frac{v^2}{2c^2} \right)$$

No interference observed → No ether

Rotating Sagnac Interferometer



Interferometer rotates with angular velocity ω

Travel AB:
$$t_{AB} = \frac{R\sqrt{2}}{c - v/\sqrt{2}}$$

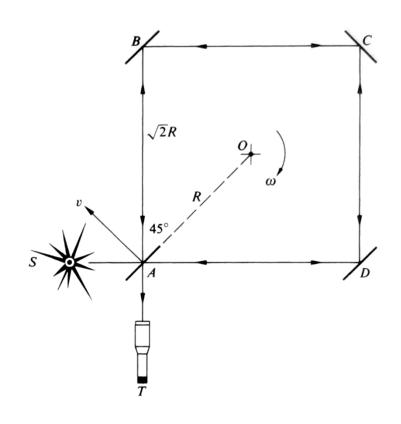
$$t_{AB} = \frac{2R}{\sqrt{2}c - \omega R}$$

Travel AD:
$$t_{AD} = \frac{2R}{\sqrt{2}c + \omega R}$$

Time difference ($\omega R << c$):

$$\Delta t \approx \frac{8R^2\omega}{c^2} = \frac{4A\omega}{c^2}$$

Rotating Sagnac Interferometer: Example



Michelson and Gale, 1925

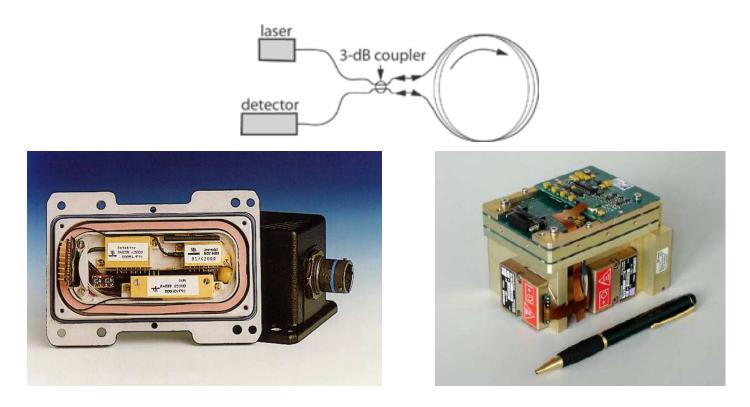
Rotation of earth: $\omega = 2\pi/24$ hours $\omega = 7.27 \times 10^{-5} \text{ s}^{-1}$ $A = (500 \text{ m})^2$

$$\Delta t \approx \frac{4A\omega}{c^2} = \frac{4 \cdot (500 \,\mathrm{m})^2 \cdot (7.27 \times 10^{-5} \,\mathrm{s}^{-1})}{(3 \times 10^8 \,\mathrm{m/s})^2}$$

$$\Delta t \approx 8.1 \times 10^{-16} \text{ s}$$

One period of light wave: $\lambda/c = (500 \text{ nm})/(3 \times 10^8 \text{ m/s}) = 1.7 \times 10^{-15} \text{ s}$

Sagnac Interferometer: Gyroscope



 Typical applications: navigation, avionics, mining, drilling, industrial robots