PURDUE DEPARTMENT OF PHYSICS

Physics 42200 Waves & Oscillations

Lecture 33 – Geometric Optics

Spring 2013 Semester

Matthew Jones

Aberrations

- We have continued to make approximations:
 - Paraxial rays
 - Spherical lenses
 - Index of refraction independent of wavelength
- How do these approximations affect images?
 - There are several ways...
 - Sometimes one particular effect dominates the performance of an optical system
 - Useful to understand their source in order to introduce the most appropriate corrective optics
- How can these problems be reduced or corrected?

Aberrations

• Limitations of paraxial rays:

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots$$

• Paraxial approximation:

$$\sin\theta \approx \theta$$

• Third-order approximation:

$$\sin\theta \approx \theta - \frac{\theta^3}{3!}$$

- The optical equations are now non-linear
 - The lens equations are only approximations
 - Perfect images might not even be possible!
 - Deviations from perfect images are called aberrations
 - Several different types are classified and their origins identified.

Aberrations

- Departure from the linear theory at third-order were classified into five types of *primary aberrations* by Phillip Ludwig Seidel (1821-1896):
 - Spherical aberration
 - Coma
 - Astigmatism
 - Field curvature
 - Distortion

Spherical Aberration

- We first derived the shape of a surface that changes spherical waves into plane waves
 - It was either a parabola, ellipse or hyperbola
- But this only worked for light sources that were on the optical axis
- To form an image, we need to bring rays into focus from points that lie off the optical axis
- A sphere looks the same from all directions so there are no "off-axis" points
- It is still not perfect there are aberrations

Spherical Aberration

Third order approximation:

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R} + h^2 \left[\frac{n_1}{2s_o} \left(\frac{1}{s_o} + \frac{1}{R} \right)^2 + \frac{n_2}{2s_i} \left(\frac{1}{R} - \frac{1}{s_i} \right)^2 \right]$$

Deviation from first-order theory

Spherical Aberrations

- Longitudinal Spherical Aberration: $L \cdot SA$
 - Image of an on-axis object is longitudinally stretched
 - Positive L \cdot SA means that marginal rays intersect the optical axis in front of F_i (paraxial focal point).
- Transverse Spherical Aberration: T · SA
 - Image of an on-axis object is blurred in the image plane
- Circle of least confusion: Σ_{LC}
 - Smallest image blur

Spherical Aberration

Example from http://www.spot-optics.com/index.htm

Spherical Aberration

- In third-order optics, the orientation of the lenses does matter
- Spherical aberration depends on the lens arrangement:

Spherical Aberration of Mirrors

- Spherical mirrors also suffer from spherical aberration
 - Parabolic mirrors do not suffer from spherical aberration, but they distort images from points that do not lie on the optical axis
- *Schmidt corrector plate* removes spherical aberration without introducing other optical defects.

Newtonian Telescope

Schmidt 48-inch Telescope

200 inch Hale telescope

48-inch Schmidt telescope

Coma (comatic aberration)

- Principle planes are not flat they are actually curved surfaces.
- Focal length is different for off-axis rays

Coma

 Negative coma: meridional rays focus closer to the principal axis

Coma

Vertical coma

Horizontal coma

Coma can be reduced by introducing a stop positioned at an appropriate point along the optical axis, so as to remove the appropriate off-axis rays.

Astigmatism

 Parallel rays from an off-axis object arrive in the plane of the lens in one direction, but not in a perpendicular direction:

Astigmatism

no astigmatism

sagittal focus

tangential focus

 This formal definition is different from the one used in ophthalmology which is caused by non-spherical curvature of the surface and lens of the eye.

- The focal plane is actually a curved surface
- A negative lens has a field plane that curves away from the image plane
- A combination of positive and negative lenses can cancel the effect

Field Curvature

• Transverse magnification, m_T , can be a function of the off-axis distance:

Positive (pincushion) distortion

Negative (barrel) distortion

Correcting Monochromatic Aberrations

- Combinations of lenses with mutually cancelling aberration effects
- Apertures
- Aspherical correction elements.

Chromatic Aberrations

Index of refraction depends on wavelength

Chromatic Aberrations

Copyright © 2005 Pearson Prentice Hall, Inc.

Chromatic Aberrations

L·CA: lateral chromatic aberration

Chromatic Aberration

Correcting for Chromatic Aberration

- It is possible to have refraction without chromatic aberration even when n is a function of λ:
 - Rays emerge displaced but parallel
 - If the thickness is small, then there is no distortion of an image
 - Possible even for non-parallel surfaces:
 - Aberration at one interface is compensated by an opposite aberration at the other surface.

Chromatic Aberration

• Focal length:

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

• Thin lens equation:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

 Cancel chromatic aberration using a combination of concave and convex lenses with different index of refraction

Chromatic Aberration

 This design does not eliminate chromatic aberration completely – only two wavelengths are compensated.

Commercial Lens Assemblies

• Some lens components are made with ultralow dispersion glass, eg. calcium fluoride