

Physics 42200 Waves & Oscillations

Lecture 3 – French, Chapter 1

Spring 2013 Semester

Matthew Jones

Simple Harmonic Motion

 The time dependence of a single dynamical variable that satisfies the differential equation

$$\ddot{x} + \omega^2 x = 0$$

can be written in various ways:

a)
$$x(t) = A \cos(\omega t + \varphi)$$

b)
$$x(t) = A \sin \omega t + B \cos \omega t$$

c)
$$x(t) = re^{i(\omega t + \varphi)} = (re^{i\varphi})e^{i\omega t} = ce^{i\omega t}$$

Waves are closely related, but also quite different...

Wave Motion

- The motion is still periodic
- No single dynamical variable

Wave Motion in One Dimension

- The *deviation from equilibrium* is a *function* of position and time
- Examples:

LONGITUDINAL

Springs:

TRANSVERSE

Springs:

Sound: air pressure

Water: surface height

Wave Motion in One Dimension

 The shape of the disturbance at one instance in time is called the wave profile

• If the wave moves with constant velocity, then

$$y(x,t) = f(x - vt)$$

- Positive v, the wave moves to the right
- Negative v, the wave moves to the left
- Sometimes we will write $y(x,t) = f(x \pm vt)$ when it is understood that v is positive

Wave Motion in One Dimension

- The shape remains unchanged
- The profile moves with constant velocity
- What differential equation describes this?

The Wave Equation

- Let $y(x,t) = f(x \pm vt) \equiv f(u)$
- Chain rule:

$$\frac{\partial y}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} = \frac{\partial f}{\partial u}$$
$$\frac{\partial y}{\partial t} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial t} = \pm v \frac{\partial f}{\partial u}$$

Second derivatives:

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 f}{\partial u^2}$$
$$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial u^2} = v^2 \frac{\partial^2 y}{\partial x^2}$$

The Wave Equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

General solution: $y(x,t) = f(x \pm vt)$

Some particular solutions are of special interest:

 Suppose the disturbance is created by simple harmonic motion at one point:

$$y(0,t) = A \cos(\omega t + \varphi)$$

- Then the wave equation tells us how this disturbance will propagate to other points in space.
- This form is called a harmonic wave.

The Wave Equation

One way to describe a harmonic wave:

$$y(x,t) = A \cos(kx - \omega t + \varphi)$$

- What is the speed of wave propagation?
 - Write this in terms of $x \pm vt$:

$$y(x,t) = A \cos(k(x \pm vt) + \varphi)$$

– Equate the coefficients to the term in t:

$$\omega t = kvt$$

So
$$v = \omega/k$$

What do these parameters represent?

Harmonic Waves

- Wavelength, λ :
 - When $x = \lambda$ then $kx = k\lambda = 2\pi$
- Wavenumber, $k = 2\pi/\lambda$
 - The phase advances by "k" radians per unit length

Harmonic Waves

Functional form: $y(x,t) = A \cos(kx - \omega t + \varphi)$

Often expressed v...

Notation: Amplitude: A

Initial phase: ϕ

Angular frequency: ••

Frequency: $f = \omega/2\pi$

Period: $T = 1/f = 2\pi/\omega$

Wave number: **k**

Wavelength: $\lambda = 2\pi/k$

Speed of propagation: v

Be careful! Sometimes people use "wavenumber" to mean $1/\lambda$...

Harmonic Waves

Elementary relationships:

$$v = \omega/k$$

$$T = \lambda/\nu$$

$$f = \nu = 1/T$$

$$\nu = \lambda \nu$$

$$\omega = 2\pi/T = 2\pi\nu$$

$$k = 2\pi/\lambda$$

 You should be able to work these out using dimensional analysis.

Examples:

- Green light emitting diodes emit light with a wavelength of $\lambda = 530$ nm. What is the frequency? Write the harmonic function that describes the propagation of this light in the +x direction.
- Purdue's wireless service uses radio frequencies in the range 2.412 to 2.472 GHz. What is the range of wavelengths?

Both light and radio waves travel with speed $c = 2.998 \times 10^8 \text{ m/s} = 29.98 \text{ cm/ns}$

Periodic Waves

The same parameters can be used to describe arbitrary periodic waveforms:

- Wavelength of one profileelement: λ
- Period in time of one profile-element: T
- The whole waveform moves with velocity $v = \pm \lambda/T$

profile-elements - when repeated can reproduce the whole waveform

Periodic Waves

- Why are harmonic waves special?
 - $y(x,t) = A\cos(kx \omega t) + B\sin(kx \omega t)$
- Any periodic wave with period T can be expressed as the linear superposition of harmonic waves with periods T, 2T, 3T, ...

(Fourier's Theorem)

- In fact, an arbitrary waveform can be expressed as a linear superposition of harmonic waves.
- It is sufficient to understand how harmonic waves propagate to describe the propagation of an arbitrary disturbance.

Superposition of Waves

- The wave equation is linear:
 - Suppose $y_1(x, t)$ and $y_2(x, t)$ are both solutions
 - Then the function $y(x,t) = a y_1(x,t) + b y_2(x,t)$ is also a solution for any real numbers a and b.
- The resulting disturbance at any point in a region where waves overlap is the algebraic sum of the constituent waves at that point.
 - The constituent waves do not interact with each other.

Example

Interference

Two waves are "in phase":

$$y_1(x,t) = A_1 \sin(kx - \omega t)$$

$$y_2(x,t) = A_2 \sin(kx - \omega t)$$

$$y(x,t) = (A_1 + A_2)\sin(kx - \omega t)$$

Amplitude of resulting wave increases: **constructive** interference

Two waves are "out of phase":

$$y_1(x,t) = A_1 \sin(kx - \omega t)$$

$$y_2(x,t) = A_2 \sin(kx - \omega t + \pi)$$

$$y(x,t) = (A_1 - A_2)\sin(kx - \omega t)$$

Amplitude of resulting wave decreases: **destructive** interference

Interference

Consider two interfering waves with different frequencies:

$$y_1(x,t) = A e^{i(k_1x - \omega_1 t)}$$

 $y_2(x,t) = A e^{i(k_2x - \omega_2 t)}$

The frequencies are not independent:

$$\omega_1 = k_1 v$$
$$\omega_2 = k_2 v$$

- Average wavenumber: $k = \frac{1}{2}(k_1 + k_2)$
- Then, $k_1 = k \Delta k$ and $k_2 = k + \Delta k$
- Written in terms of k and Δk :

$$y_1(x,t) = A e^{i((k-\Delta k)(x-vt))}$$

 $y_2(x,t) = A e^{i((k+\Delta k)(x-vt))}$

Interference

Superposition of the two waveforms:

$$y(x,t) = y_1(x,t) + y_2(x,t)$$
= $A e^{i(k(x-vt))} (e^{-i(\Delta k(x-vt))} + e^{i(\Delta k(x-vt))})$
= $2Ae^{i(k(x-vt))} \cos(\Delta k(x-vt))$

