

Physics 42200 Waves & Oscillations

Lecture 28 – Polarization of Light

Spring 2013 Semester

Matthew Jones

Polarization

$$\vec{E}_{x}(z,t) = E_{0x}\hat{\imath}\cos(kz - \omega t)$$

$$\vec{E}_{y}(z,t) = E_{0y}\hat{\jmath}\cos(kz - \omega t + \xi)$$

- Unpolarized light: Random E_{0x} , E_{0y} , ξ
- Linear polarization: $\xi = 0, \pm \pi$
- Circular polarization: $E_{0x} = E_{0y}$ and $\xi = \pm \frac{\pi}{2}$
- Elliptical polarization: everything else
- Polarization changed by
 - Absorption
 - Reflection
 - Propagation through birefringent materials

Polarization

Two problems to be considered today:

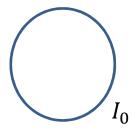
- 1. How to measure the polarization state of an unknown beam of coherent light.
- 2. What is the resulting polarization after an initially polarized beam passes through a series of optical elements?

Measuring Polarization

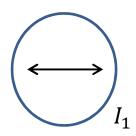
- Polarization is influenced by
 - Production mechanism
 - Propagation through birefringent material
- Measuring polarization tells us about each of these.
- Example: polarization of light from stars
 - First observed in 1949
 - Thermal (blackbody) radiation expected to be unpolarized
 - Interstellar medium is full of electrons and ionized gas
 - Interstellar magnetic fields polarize this material
 - Circular birefringence (L and R states propagate with different speeds)

- Stokes considered a set of four polarizing filters
 - The choice is not unique...
- Each filter transmits exactly half the intensity of unpolarized light

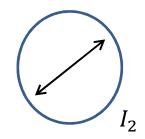
George Gabrial Stokes 1819-1903



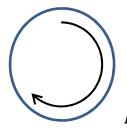
Unpolarized:
filters out ½
the intensity of
any incident
light.



Linear: transmits only horizontal component



Linear: transmits only light polarized at 45°



Circular: transmits only R-polarized light

The Stokes parameters are defined as:

$$S_0 = 2I_0$$

 $S_1 = 2I_1 - 2I_0$
 $S_2 = 2I_2 - 2I_0$
 $S_3 = 2I_3 - 2I_0$

- Usually normalize intensity so that $I_0 \equiv 1$
- Unpolarized light:
 - half the light intensity is transmitted through each filter...

$$S_0 = 1$$
 and $S_1 = S_2 = S_3 = 0$

$$S_0 = 2I_0$$

 $S_1 = 2I_1 - 2I_0$
 $S_2 = 2I_2 - 2I_0$
 $S_3 = 2I_3 - 2I_0$

- Horizontal polarization:
 - Half the light passes through the first filter
 - All the light passes through the second filter
 - Half the light passes through the third filter
 - Half the light passes through the fourth filter

$$S_0 = 1, S_1 = 1, S_2 = 0, S_3 = 0$$

$$S_0 = 2I_0$$

 $S_1 = 2I_1 - 2I_0$
 $S_2 = 2I_2 - 2I_0$
 $S_3 = 2I_3 - 2I_0$

Vertical polarization:

- Half the light passes through the first filter
- No light passes through the second filter
- Half the light passes through the third filter
- Half the light passes through the fourth filter

$$S_0 = 1, S_1 = -1, S_2 = 0, S_3 = 0$$

$$S_0 = 2I_0$$

 $S_1 = 2I_1 - 2I_0$
 $S_2 = 2I_2 - 2I_0$
 $S_3 = 2I_3 - 2I_0$

Polarized at 45°:

$$S_0 = 1, S_1 = 0, S_2 = 1, S_3 = 0$$

Polarized at -45°:

$$S_0 = 1, S_1 = 0, S_2 = -1, S_3 = 0$$

• Right circular polarization:

$$S_0 = 1, S_1 = 0, S_2 = 0, S_3 = 1$$

Left circular polarization:

$$S_0 = 1, S_1 = 0, S_2 = 0, S_3 = 1$$

Interpretation:

$$\vec{E}_{x}(z,t) = E_{0x}\hat{\imath}\cos(kz - \omega t)$$

$$\vec{E}_{y}(z,t) = E_{0y}\hat{\jmath}\cos(kz - \omega t + \xi)$$

Averaged over a suitable interval:

$$S_{0} = \langle E_{0x}^{2} \rangle + \langle E_{0y}^{2} \rangle$$

$$S_{1} = \langle E_{0x}^{2} \rangle - \langle E_{0y}^{2} \rangle$$

$$S_{2} = \langle 2E_{0x}E_{0y}\cos \xi \rangle$$

$$S_{3} = \langle 2E_{0x}E_{0y}\sin \xi \rangle$$

$$S_{0} = \langle E_{0x}^{2} \rangle + \langle E_{0y}^{2} \rangle$$

$$S_{1} = \langle E_{0x}^{2} \rangle - \langle E_{0y}^{2} \rangle$$

$$S_{2} = \langle 2E_{0x}E_{0y}\cos \xi \rangle$$

$$S_{3} = \langle 2E_{0x}E_{0y}\sin \xi \rangle$$

• Try it out:

- Right circular polarization: $E_{0x}=E_{0y}$, $\xi=\frac{\pi}{2}$
- Then, $S_1 = 0$, $S_2 = 0$, $S_3 = S_0$
- When we normalize the intensity so that $S_0 = 1$, $S_0 = 1$, $S_1 = 0$, $S_2 = 0$, $S_3 = 1$

• The "degree of polarization" is the fraction of incident light that is polarized:

$$V = \frac{I_p}{I_p + I_n}$$

- A mixture (by intensity) of 40% polarized and 60% unpolarized light would have V=40%.
- The degree of polarization is given in terms of the Stokes parameters:

$$V = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0}$$

 Application: what is the net polarization that results from a mixture light with several polarized components?

Procedure:

- Calculate Stokes parameters for each component
- Add the Stokes parameters, weighted by the fractions (by intensity)
- Calculate the degree of polarization
- Interpret qualitative type of polarization

- Example: Two components
 - 40% has vertical linear polarization
 - 60% has right circular polarization
- Calculate Stokes parameters:

$$S = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = 0.4 \times \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + 0.6 \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.4 \\ 0 \\ 0.6 \end{bmatrix}$$

Degree of polarization:

$$V = \sqrt{(0.4)^2 + (0.6^2)} = 0.72$$

- Proposed by Richard Clark Jones (probably no relation) in 1941
- Only applicable to beams of coherent light
- Electric field vectors:

$$\vec{E}_{x}(z,t) = E_{0x}\hat{i}\cos(kz - \omega t + \varphi_{x})$$

$$\vec{E}_{y}(z,t) = E_{0y}\hat{j}\cos(kz - \omega t + \varphi_{y})$$

Jones vector:

$$\tilde{E} = \begin{bmatrix} E_{0x} e^{i\varphi_x} \\ E_{0y} e^{i\varphi_y} \end{bmatrix}$$

• It is convenient to pick $\varphi_{\chi}=0$ and normalize the Jones vector so that $|\tilde{E}|=1$

$$\tilde{E} = \begin{bmatrix} E_{0x}e^{i\varphi_x} \\ E_{0y}e^{i\varphi_y} \end{bmatrix} \rightarrow \tilde{E} = \frac{1}{\sqrt{E_{0x}^2 + E_{0y}^2}} \begin{bmatrix} E_{0x} \\ E_{0y}e^{i\xi} \end{bmatrix}$$

- Example:
 - Horizontal linear polarization: $\vec{E}_{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - Vertical linear polarization: $\vec{E}_y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 - Linear polarization at 45°: $\vec{E}_{45^\circ} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Circular polarization:

$$\vec{E}_R = \frac{E_0}{2} [\hat{\imath} \cos(kz - \omega t) + \hat{\jmath} \sin(kz - \omega t)]$$

$$\vec{E}_L = \frac{E_0}{2} [\hat{\imath} \cos(kz - \omega t) - \hat{\jmath} \sin(kz - \omega t)]$$

• Linear representation:

$$\vec{E}_{x}(z,t) = E_{0x}\hat{\imath}\cos(kz - \omega t)$$

$$\vec{E}_{y}(z,t) = E_{0y}\hat{\jmath}\cos(kz - \omega t + \xi)$$

- What value of ξ gives $\cos(kz \omega t + \xi) = \sin(kz \omega t)$?
- That would be $\xi = -\pi/2$

– Right circular polarization:

$$\vec{E}_R = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ e^{-i\pi/2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

– Left circular polarization:

$$\vec{E}_L = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ e^{+i\pi/2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$$

 Adding the Jones vectors adds the electric fields, not the intensities:

$$\vec{E}_R + \vec{E}_L = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix} = \frac{2}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Horizontal linear polarization

 When light propagates through an optical element, its polarization can change:

• $\overrightarrow{E'}$ and \overrightarrow{E} are related by a 2x2 matrix (the Jones matrix):

$$\overrightarrow{E'} = A \overrightarrow{E}$$

If light passes through several optical elements, then

$$\overrightarrow{E'} = A_n \cdots A_2 A_1 \vec{E}$$

(Remember to write the matrices in reverse order)

Examples:

Transmission through an optically inactive material:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 Rotation of the plane of linear polarization (eg, propagation through a sugar solution)

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

- When
$$\alpha = \frac{\pi}{2}$$
, $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

$$-\operatorname{lf} \vec{E}_{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \operatorname{then} A \ \vec{E}_{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \vec{E}_{y}$$

Propagation through a quarter wave plate:

$$\vec{E} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \rightarrow \vec{E'} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

- What matrix achieves this?
 - The x-component is unchanged
 - The y-component is multiplied by $e^{-i\pi/2}$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$

- Note that an overall phase can be chosen for convenience and factored out
 - For example, in Hecht, Table 8.6: $A=e^{i\pi/4}\begin{bmatrix}1&0\\0&-i\end{bmatrix}$
 - Important not to mix inconsistent sets of definitions!

Mueller Matrices

 We can use the same approach to describe the change in the Stokes parameters as light propagates through different optical elements

$$S = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \Rightarrow S' = MS$$

M is a 4x4 matrix: "the Mueller matrix"

Mueller Matrices

- Example: horizontal linear polarizer
 - Incident unpolarized light

$$S_0 = 1, S_1 = 0, S_2 = 0, S_3 = 0$$

Emerging linear polarization

$$S_0 = \frac{1}{2}, S_1 = \frac{1}{2}, S_2 = 0, S_3 = 0$$

– Mueller matrix:

Mueller Matrices

 What is the polarization state of light that initially had right-circular polarization but passed through a horizontal polarizer?

Jones Calculus/Mueller Matrices

Some similarities:

- Polarization state represented as a vector
- Optical elements represented by matrices

• Differences:

- Jones calculus applies only to coherent light
- Jones calculus quantifies the phase evolution of the electric field components
- Can be used to analyze interference
- Stokes parameters only describe the irradiance (intensity) of light
- Stokes parameters/Mueller matrices only apply to incoherent light – they do not take into account phase information or interference effects