PURDUE DEPARTMENT OF PHYSICS

Physics 42200 Waves & Oscillations

Lecture 26 – Propagation of Light

Spring 2013 Semester

Matthew Jones

Midterm Exam

Almost all grades have been uploaded to http://chip.physics.purdue.edu/public/422/spring2013/

These grades have not been adjusted

Exam questions and solutions are available on the Physics 42200 web page.

Outline for the rest of the course

- Polarization
- Geometric Optics
- Interference
- Diffraction
- Review

Polarization by Partial Reflection

- Continuity conditions for Maxwell's Equations at the boundary between two materials
- Different conditions for the components of \vec{E} or \vec{H} parallel or perpendicular to the surface.

Polarization by Partial Reflection

• Continuity of electric and magnetic fields were different depending on their orientation:

Perpendicular to surface

$$\varepsilon_1 E_{1\perp} = \varepsilon_2 E_{2\perp}$$
$$\mu_1 H_{1\perp} = \mu_2 H_{2\perp}$$

– Parallel to surface

$$\begin{aligned} E_{1\parallel} &= E_{2\parallel} \\ H_{1\parallel} &= H_{2\parallel} \end{aligned}$$

$\overrightarrow{E} \text{ perpendicular to } \widehat{n}$ $\frac{-E_i \cos \theta_i + E_r \cos \theta_i}{Z_1} = \frac{-E_t \cos \theta_t}{Z_2}$ $\frac{E_i \cos \theta_t + E_r \cos \theta_t}{Z_2} = \frac{E_t \cos \theta_t}{Z_2}$

• Solve for E_r/E_i : $\frac{E_r}{E_t} = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}$ • Solve for E_t/E_i :

$$\frac{E_t}{E_t} = \frac{ZZ_2 \cos \theta_i}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}$$

$\overrightarrow{H} \text{ perpendicular to } \widehat{n}$ $\frac{E_i \cos \theta_i - E_r \cos \theta_i}{Z_2} = \frac{E_t \cos \theta_t}{Z_2}$ $\frac{E_i \cos \theta_t + E_r \cos \theta_t}{Z_1} = \frac{E_t \cos \theta_t}{Z_2}$

• Solve for E_r/E_i : $\frac{E_r}{E_t} = \frac{Z_1 \cos \theta_i - Z_2 \cos \theta_t}{Z_1 \cos \theta_i + Z_2 \cos \theta_t}$ • Solve for E_t/E_i : $\frac{E_t}{E_t} = \frac{2Z_1 \cos \theta_i}{Z_1 \cos \theta_i}$

 $\frac{Z_t}{E_t} = \frac{Z_1 \cos \theta_t}{Z_1 \cos \theta_i + Z_2 \cos \theta_t}$

Fresnel's Equations

• In most dielectric media, $\mu_1 = \mu_2$ and therefore

$$\frac{Z_1}{Z_2} = \sqrt{\frac{\mu_1 \varepsilon_2}{\mu_2 \varepsilon_1}} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1} = \frac{\sin \theta_i}{\sin \theta_t}$$

• After some trigonometry...

$$\left(\frac{E_r}{E_i}\right)_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \qquad \left(\frac{E_r}{E_i}\right)_{\parallel} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$$

$$\left(\frac{E_t}{E_i}\right)_{\perp} = \frac{(n_1/n_2)\sin(2\theta_i)}{\sin(\theta_i + \theta_t)} \quad \left(\frac{E_t}{E_i}\right)_{\parallel} = \frac{2\cos(\theta_i)\sin(\theta_t)}{\sin(\theta_i + \theta_t)\cos(\theta_i - \theta_t)}$$

For \vec{E} perpendicular and parallel to plane of incidence.

Application of Fresnel's Equations

- Unpolarized light in air (n = 1) is incident on a surface with index of refraction n' = 1.5 at an angle $\theta_i = 30^{\circ}$
- What are the magnitudes of the electric field components of the reflected light?

First calculate the angles of reflection and refraction...

$$\theta_r = \theta_i = 30^\circ$$

$$\sin \theta_i = n' \sin \theta_t$$

$$\sin \theta_t = \frac{\sin 30^\circ}{1.5} = 0.333$$

$$\theta_t = 19.5^\circ$$

Application of Fresnel's Equations

Component of \vec{E} parallel to the surface is perpendicular to the plane of incidence

$$\begin{pmatrix} E_r \\ \overline{E_i} \end{pmatrix}_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)}$$
$$= -\frac{\sin(30^\circ - 19.5^\circ)}{\sin(30^\circ + 19.5^\circ)}$$
$$= -0.240$$

Application of Fresnel's Equations

Component of \vec{E} perpendicular to the surface is parallel to the plane of incidence

$$\begin{pmatrix} \frac{E_r}{E_i} \end{pmatrix}_{\parallel} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$$
$$= \frac{\tan(30^\circ - 19.5^\circ)}{\tan(30^\circ + 19.5^\circ)}$$
$$= 0.158$$

• Reflected light is preferentially polarized parallel to the surface.

Reflected Components

• Since $\theta_t < \theta_i$ the component perpendicular to the plane of incidence is always negative:

$$\left(\frac{E_r}{E_i}\right)_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)}$$

• The component parallel to the plane of incidence could be positive or negative:

$$\left(\frac{E_r}{E_i}\right)_{\parallel} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$$

- What happens when $\theta_i + \theta_t = 90^\circ$?
 - Can this happen? Sure... check when $\theta_i \rightarrow 90^{\circ}$.

Brewster's Angle

 $\tan \theta \rightarrow \infty$ as $\theta \rightarrow 90^{\circ}$ while $\tan(\theta_i - \theta_t)$ remains finite.

Therefore, $\left(\frac{E_r}{E_i}\right)_{\parallel} \to 0$

Brewster's angle, θ_B is the angle of incidence for which $r_{\parallel} \rightarrow 0$.

Brewster's Angle

- Brewster's angle can be calculated from the relation $\theta_i + \theta_t = 90^{\circ}$
- We can always calculate θ_t using Snell's law
- Good assignment question:

Show that
$$\theta_B = \tan^{-1}\left(\frac{n_2}{n_1}\right)$$

• Light reflected from a surface at an angle θ_B will be linearly polarized parallel to the surface (perpendicular to the plane of incidence)

Total Internal Reflection

• Consider the other case when $n_i > n_t$, for example, glass to air:

At some incidence angle (critical angle θ_c) everything is reflected (and nothing transmitted).

It can be shown that for any angle larger than θ_c no waves are transmitted into media: **total internal reflection**.

No phase shift upon reflection.

Reflected Intensity

• Remember that the *intensity* (*irradiance*) is related to the energy carried by light:

$$I = \epsilon v \langle E^2 \rangle_T$$

(averaged over some time $T \gg 1/f$)

• Reflectance is defined as

$$R_{\perp} = (r_{\perp})^2 = \frac{\sin^2(\theta_i - \theta_t)}{\sin^2(\theta_i + \theta_t)}$$
$$R_{\parallel} = (r_{\parallel})^2 = \frac{\tan^2(\theta_i - \theta_t)}{\tan^2(\theta_i - \theta_t)}$$

• Unpolarized reflectance:

$$R = \frac{1}{2} \left(R_{\perp} + R_{\parallel} \right)$$

Reflected Intensity

- How polarized is the reflected light?
- Degree of polarization: $V = I_p/I_{total}$
- Measured using an analyzing polarizer

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Birefringence

 In a crystal with a regular, repeating atomic lattice, electrons can be more tightly bound along certain axes:

Birefringence

- Electric fields oriented parallel or perpendicular to the planes in the crystal lattice interact with electrons differently.
- Depend on the atomic crystal structure
- Some crystals absorb light polarized along one axis:

Dichroic crystal: absorbs light polarized along one axis

• Other crystals transmit light, but the index of refraction depends on its polarization

Optic axis: the direction of linear polarization that differs from the other two axes

Assuming only one axis is special, the other two are the same.

Calcite (CaCO₃)

👝 Ca 💊 C 🖕 O

Image doubles:

Ordinary rays (o-rays) - unbent Extraordinary rays (e-rays) - bend

Birefringence and Huygens' Principle

Useful Applications

🟫 🔻 C 🛃 + Google

P 俞

kel www.icenews.is/2013/03/14/stone-found-in-english-channel-could-be-icelandic-sunstone/

Stone found in English Channel could be Icelandic 'sunstone'

Posted on 14 March 2013. Tags: English Channel, Sun stone, sunstone, Vikings

Lee Stone found in English Channel could b... +

A crystal recovered from a shipwreck in the English Channel may turn out to be the fabled 'sunstone' said to be used by the Vikings. According to ancient folklore, the Vikings used a crystal called sunstone to help navigate during cloudy weather. However, it has long been debated on weather or not the substance actually exists.

But researchers from the British-French group the Alderney Maritime Trust said in a new paper published the Proceedings of the Royal Society A journal

that a large piece of Icelandic calcite recovered from the 16th century shipwreck might in fact be the fabled stone.

Crystal Structure and Birefringence

NaCl - cubic crystal

Four 3-fold symmetry axes - optically isotropic

Anisotropic, uniaxial birefringent crystals: hexagonal, tetragonal, trigonal

Uniaxial crystal: atoms are arranged symmetrically around optic axis

O-wave - \vec{E} everywhere is perpendicular to the optic axis, $n_o \equiv c/v_{\perp}$

When \vec{E} is parallel to optic axis: $n_e \equiv c/v_{||}$

Birefringence $\equiv n_e - n_o$ principal indices of refraction Calcite: $(n_e - n_o) = -0.172$ (negative uniaxial crystal)

Crystal Structure and Birefringence

Negative uniaxial crystal

$$\frac{n_e < n_o}{\frac{c}{n_e} > \frac{c}{n_o}}$$

Positive uniaxial crystal

$$\frac{n_e > n_o}{\frac{c}{n_e} > \frac{c}{n_o}}$$

Biaxial Crystals

Two optic axes and three principal indices of refraction Orthorhombic, monoclinic, triclinic

