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Review

1. Simple harmonic motion (one degree of freedom)

– mass/spring, pendulum, water in pipes, RLC circuits

– damped harmonic motion

2. Forced harmonic oscillators

– amplitude/phase of steady state oscillations

– transient phenomena

3. Coupled harmonic oscillators

– masses/springs, coupled pendula, RLC circuits

– forced oscillations

4. Uniformly distributed discrete systems

– masses on string fixed at both ends

– lots of masses/springs



Review

5. Continuously distributed systems (standing waves)

– string fixed at both ends

– sound waves in pipes (open end/closed end)

– transmission lines

– Fourier analysis

6. Progressive waves in continuous systems

– dispersion, phase velocity/group velocity

– reflection/transmission coefficients

7. Waves in two and three dimensions

– Laplacian operator

– Rotationally symmetric solutions in 2d and 3d



Coupled Discrete Systems
• The general method of calculating eigenvalues will always 

work, but for simple systems you should be able to decouple 

the equations by a change of variables.
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Forced Oscillations

• We mainly considered the qualitative aspects

– We did not analyze the behavior when damping forces 

were significant

• Main features:

– Resonance occurs at each normal mode frequency

– Phase difference is � = � 2⁄ at resonance

• Example:  �� driven by the force � 
 = �� ��� 
�
– Calculate force term applied to normal coordinates
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– Reduced to two one-dimensional forced oscillators:
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Equations of motion for masses in the middle:
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Uniformly Distributed Discrete Systems
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• Proposed solution:
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Uniformly Distributed Discrete Masses



• Amplitude of mass - for normal mode 	:
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• Frequency of normal mode 	:
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Vibrations of Continuous Systems



Masses on a String

First normal mode

Second normal mode



Lumped LC Circuit
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This is the exact same problem as the previous two examples.



Forced Coupled Oscillators

• Qualitative features are the same:

– Motion can be decoupled into a set of 	.
independent oscillator equations (normal modes)

– Amplitude of normal mode oscillations are large 

when driven with the frequency of the normal 

mode

– Phase difference approaches �/2 at resonance

• You should be able to anticipate the 

qualitative behavior when coupled oscillators 

are driven by a periodic force.



Continuous Distributions

Limit as . → ∞ and � ℓ⁄ → ?:
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Boundary conditions specified at � = 0 and � = 4:

– Fixed ends: $ 0 = $ 4 = 0
– Maximal motion at ends: $B 0 = $B 4 = 0
– Mixed boundary conditions

Normal modes will be of the form

$% �, � = '% sin(	%�) cos(
%� − �%)
or           $% �, � = '% cos(	%�) cos(
%� − �%)



Properties of the Solutions
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Boundary Conditions

• Examples:

– String fixed at both ends: $ 0 = $ 4 = 0
– Organ pipe open at one end: $B 0 = $B 4 = 0

• Driving end has maximal pressure amplitude

– Organ pipe closed at one end: $B 0 = 0, $ 4 = 0
– Transmission line open at one end: 6 4 = 0
– Transmission line shorted at one end: A 4 ∝ H! I

HJ = 0



Fourier Analysis

• Normal modes satisfying $ 0 = $ 4 = 0:
$% �, � = '% sin -��
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• General solution:
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Fourier Analysis

• Fourier sine transform:
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Fourier Analysis

M% = '% cos �%*% = '%
% sin �%
Solve for amplitudes:

'% = M%� + *%�
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Solve for phase:
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Fourier Analysis

• Suggestion: don’t simply rely on these formulas – use 

your knowledge of the boundary conditions and initial 

conditions.

• Example:

– If you are given  $B �, 0 = 0 and $ 0 = $ 4 = 0 then you 

know that solutions are of the form 

$ �, � = 0'%sin -��
4 cos
%�

– If you are given $B �, 0 = 0 and $B 0 = 0, $ 4 = 0 then 

solutions are of the form

$ �, � = 0 '%cos -��
4 cos
%�
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Progressive Waves

• Far from the boundaries, other descriptions are more 

transparent:

$ �, � = F � ± A�
• The Fourier transform gives the frequency components:
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• Narrow pulse in space � wide range of frequencies

• Pulse spread out in space � narrow range of frequencies



Properties of Progressive Waves

• Power carried by a wave:

– String with tension & and mass per unit length ?
S = 1

2?
�'�A = 1
2T
�'�

• Impedance of the medium:

T = ?A = &/A
• Important properties:

– Impedance is a property of the medium, not the wave

– Energy and power are proportional to the square of the 

amplitude



Reflections

• Wave energy is reflected by discontinuities in the impedance 

of a system

• Reflection and transmission coefficients:

– The wave is incident and reflected in medium 1

– The wave is transmitted into medium 2

U = VW − VX
VW + VX

Y = XVW
VW + VX

• Wave amplitudes:

'Z = 	['!'J = \'!



Reflected and Transmitted Power

• Power is proportional to the square of the 

amplitude.

– Reflected power: SZ = [�S!
– Transmitted power: SJ = \�S!

• You should be able to demonstrate that energy is 

conserved:

ie, show that ]^ = ]_ + ]`



Dispersion

• Wave speed is sometimes a function of frequency.

• Phase velocity: A = EF = a
( (constant)

• Group velocity: Ab = Ha
H( (function of frequency)

• Energy that is carried by a pulse propagates with the 

group velocity

• In optics, A = �/-(	) and

Ab = A 1 − 	
-
5-
5	

(evaluated at the average wavenumber of the pulse)



Waves in Two and Three Dimensions

• Wave equation:

c�d = 1
A�
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• When the function only depends on the radius,

(eg, @d 5e⁄ = 0) then this can be written:
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Polar 

coordinates (2d)

Spherical 

coordinates (3d)



Waves in Two Dimensions

• Wave equation in polar coordinates:

c�d = 1
f
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• Bessel’s equation:
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Waves in Three Dimensions

• Wave equation in spherical coordinates:

c�d = 1
f

@�
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• When 
rst
rJs = −ω�d this is

1
f
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• Solutions are of the form:
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Boundary Conditions in Two and Three 

Dimensions

• When a boundary condition imposes the 

restriction that d w, � = 0 then the function 

must have a node at f = w.

• Analogous to the 1-dimensional case:  

This imposes the requirement that 	w
is a root of the equation F 	w = 0
which implies that 	% = ax

y = g%/w
where g% are roots of F g = 0.



That’s all for now…

• Study these topics – make sure you 

understand the examples and assignment 

questions.

• Send e-mail if you would like specific examples 

discussed before the exam next Wednesday.

• Next topics: waves applied to optics.


