

Physics 42200 Waves & Oscillations

Lecture 22 – Review

Spring 2013 Semester

Matthew Jones

Midterm Exam:

Date: Wednesday, March 6th

Time: 8:00 - 10:00 pm

Room: PHYS 203

Material: French, chapters 1-8

Review

- 1. Simple harmonic motion (one degree of freedom)
 - mass/spring, pendulum, water in pipes, RLC circuits
 - damped harmonic motion
- 2. Forced harmonic oscillators
 - amplitude/phase of steady state oscillations
 - transient phenomena
- 3. Coupled harmonic oscillators
 - masses/springs, coupled pendula, RLC circuits
 - forced oscillations
- 4. Uniformly distributed discrete systems
 - masses on string fixed at both ends
 - lots of masses/springs

Review

- 5. Continuously distributed systems (standing waves)
 - string fixed at both ends
 - sound waves in pipes (open end/closed end)
 - transmission lines
 - Fourier analysis
- 6. Progressive waves in continuous systems
 - dispersion, phase velocity/group velocity
 - reflection/transmission coefficients
- 7. Waves in two and three dimensions
 - Laplacian operator
 - Rotationally symmetric solutions in 2d and 3d

Coupled Discrete Systems

 The general method of calculating eigenvalues will always work, but for simple systems you should be able to decouple the equations by a change of variables.

Forced Oscillations

- We mainly considered the qualitative aspects
 - We did not analyze the behavior when damping forces were significant
- Main features:
 - Resonance occurs at each normal mode frequency
 - Phase difference is $\delta = \pi/2$ at resonance
- Example: x_A driven by the force $F(\omega) = F_0 \cos \omega t$
 - Calculate force term applied to normal coordinates

$$F_1(\omega) = F_2(\omega) = F_0 \cos \omega t$$

Reduced to two one-dimensional forced oscillators:

$$\ddot{q}_1 + (\omega_0)^2 q_1 = F_0/m \cos \omega t$$

$$\ddot{q}_2 + (\omega')^2 q_2 = F_0/m \cos \omega t$$

Uniformly Distributed Discrete Systems

Equations of motion for masses in the middle:

$$\ddot{x}_i + 2(\omega_0)^2 x_i - (\omega_0)^2 (x_{i-1} + x_{i+1}) = 0$$
$$(\omega_0)^2 = k/m$$

$$\ddot{y}_n + 2(\omega_0)^2 y_n - (\omega_0)^2 (y_{n+1} + y_{n-1}) = 0$$
$$(\omega_0)^2 = T/m\ell$$

Uniformly Distributed Discrete Masses

Proposed solution:

$$\frac{x_n(t) = A_n \cos \omega t}{A_{n-1} + A_{n+1}} = \frac{-\omega^2 + 2(\omega_0)^2}{(\omega_0)^2}$$

We solved this to determine A_n and ω_k :

his to determine
$$A_n$$
 and ω_k :
$$A_{n,k} = C \sin\left(\frac{nk\pi}{N+1}\right) \begin{array}{l} \text{Amplitude of mass } n \\ \text{Amplitude of mass } n \\ \text{Amplitude of mormal} \\ \text{Oscillating in normal} \\ \text{mode } k \\ \text{mode } k \\ \text{oscillating of normal} \\ \omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right) \begin{array}{l} \text{Frequency of normal} \\ \text{Frequency of normal} \\ \text{mode } k \\ \text{mode } k \end{array}$$
 stion:

General solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \delta_k)$$

Vibrations of Continuous Systems

Amplitude of mass n for normal mode k:

$$A_{n,k} = C \sin\left(\frac{nk\pi}{N+1}\right)$$

Frequency of normal mode k:

$$\omega_k = 2\omega_0 \sin\left(\frac{k\pi}{2(N+1)}\right)$$

Solution for normal modes:

$$x_n(t) = A_{n,k} \cos \omega_k t$$

General solution:

$$x_n(t) = \sum_{k=1}^{N} a_k \sin\left(\frac{nk\pi}{N+1}\right) \cos(\omega_k t - \delta_k)$$

Masses on a String

First normal mode

Second normal mode

Lumped LC Circuit

$$\frac{d^2i_n}{dt^2} + 2\omega_0^2i_n - \omega_0^2(i_{n-1} + i_{n+1}) = 0$$

This is the exact same problem as the previous two examples.

Forced Coupled Oscillators

- Qualitative features are the same:
 - Motion can be decoupled into a set of N independent oscillator equations (normal modes)
 - Amplitude of normal mode oscillations are large when driven with the frequency of the normal mode
 - Phase difference approaches $\pi/2$ at resonance
- You should be able to anticipate the qualitative behavior when coupled oscillators are driven by a periodic force.

Continuous Distributions

Limit as $N \to \infty$ and $m/\ell \to \mu$:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

Boundary conditions specified at x = 0 and x = L:

- Fixed ends: y(0) = y(L) = 0
- Maximal motion at ends: $\dot{y}(0) = \dot{y}(L) = 0$
- Mixed boundary conditions

Normal modes will be of the form

$$y_n(x,t) = A_n \sin(k_n x) \cos(\omega_n t - \delta_n)$$

or
$$y_n(x,t) = A_n \cos(k_n x) \cos(\omega_n t - \delta_n)$$

Properties of the Solutions

$$y(L,t) \sim \sin k_n L = 0 \quad \Rightarrow \quad k_n L = n\pi$$

$$\Rightarrow$$

$$k_n L = n\pi$$

mode

first

wavelength

frequency

2L

$$\lambda_n = \frac{2L}{n}$$

second

L

third

$$f_n = \frac{nv}{2L}$$

fourth

 $\frac{L}{2}$

Boundary Conditions

Examples:

- String fixed at both ends: y(0) = y(L) = 0
- Organ pipe open at one end: $\dot{y}(0) = \dot{y}(L) = 0$
 - Driving end has maximal pressure amplitude
- Organ pipe closed at one end: $\dot{y}(0) = 0$, y(L) = 0
- Transmission line open at one end: i(L) = 0
- Transmission line shorted at one end: $v(L) \propto \frac{di(L)}{dt} = 0$

• Normal modes satisfying y(0) = y(L) = 0:

$$y_n(x,t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \delta_n)$$

General solution:

$$y(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \delta_n)$$

Initial conditions:

$$y(x,0) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\delta_n) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$$
$$\dot{y}(x,0) = \sum_{n=1}^{\infty} A_n \omega_n \sin\left(\frac{n\pi x}{L}\right) \sin(\delta_n) = \sum_{n=1}^{\infty} C_n \sin\left(\frac{n\pi x}{L}\right)$$

• Fourier sine transform:

$$u(x) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$$
$$B_n = \frac{2}{L} \int_0^L u(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Fourier cosine transform:

$$v(x) = \sum_{n=1}^{\infty} B_n \cos\left(\frac{n\pi x}{L}\right)$$
$$B_n = \frac{2}{L} \int_0^L v(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$B_n = A_n \cos \delta_n$$

$$C_n = A_n \omega_n \sin \delta_n$$

Solve for amplitudes:

$$A_n = \sqrt{B_n^2 + \frac{C_n^2}{\omega_n^2}}$$

Solve for phase:

$$\tan \delta_n = \frac{C_n}{B_n \omega_n}$$

- Suggestion: don't simply rely on these formulas use your knowledge of the boundary conditions and initial conditions.
- Example:
 - If you are given $\dot{y}(x,0) = 0$ and y(0) = y(L) = 0 then you know that solutions are of the form

$$y(x,t) = \sum A_n \sin\left(\frac{n\pi x}{L}\right) \cos \omega_n t$$

- If you are given $\dot{y}(x,0) = 0$ and $\dot{y}(0) = 0$, y(L) = 0 then solutions are of the form

$$y(x,t) = \sum_{odd,n} A_n \cos\left(\frac{n\pi x}{L}\right) \cos\omega_n t$$

Progressive Waves

 Far from the boundaries, other descriptions are more transparent:

$$y(x,t) = f(x \pm vt)$$

The Fourier transform gives the frequency components:

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cos(kx) dx$$

$$B(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \sin(kx) dx$$

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) \cos(kx) dk + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} B(k) \sin(kx) dk$$

- Narrow pulse in space wide range of frequencies
- Pulse spread out in space narrow range of frequencies

Properties of Progressive Waves

- Power carried by a wave:
 - String with tension T and mass per unit length μ

$$P = \frac{1}{2}\mu\omega^{2}A^{2}v = \frac{1}{2}Z\omega^{2}A^{2}$$

• Impedance of the medium:

$$Z = \mu v = T/v$$

- Important properties:
 - Impedance is a property of the medium, not the wave
 - Energy and power are proportional to the square of the amplitude

Reflections

- Wave energy is reflected by discontinuities in the impedance of a system
- Reflection and transmission coefficients:
 - The wave is incident and reflected in medium 1
 - The wave is transmitted into medium 2

$$ho = rac{Z_1 - Z_2}{Z_1 + Z_2} \ au = rac{2Z_1}{Z_1 + Z_2}$$

Important: when is this negative?

Wave amplitudes:

$$A_r = \rho A_i$$
$$A_t = \tau A_i$$

Reflected and Transmitted Power

- Power is proportional to the square of the amplitude.
 - Reflected power: $P_r = \rho^2 P_i$
 - Transmitted power: $P_t = \tau^2 P_i$
- You should be able to demonstrate that energy is conserved:

ie, show that
$$P_i = P_r + P_t$$

Dispersion

- Wave speed is sometimes a function of frequency.
- Phase velocity: $v = \lambda f = \frac{\omega}{k}$ (constant)
- Group velocity: $v_g = \frac{d\omega}{dk}$ (function of frequency)
- Energy that is carried by a pulse propagates with the group velocity
- In optics, v = c/n(k) and

$$v_g = v \left(1 - \frac{k}{n} \frac{dn}{dk} \right)$$

(evaluated at the average wavenumber of the pulse)

Waves in Two and Three Dimensions

Wave equation:

$$\nabla^2 \psi = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

 When the function only depends on the radius, (eg, $\partial \psi/d\theta = 0$) then this can be written:

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} \qquad \text{Polar coordinates (2d)}$$

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r\psi) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$
 Spherical coordinates (3d)

Waves in Two Dimensions

Wave equation in polar coordinates:

tion in polar coordinates:
$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} \qquad \text{But only when } 0!$$
 uation:

Bessel's equation:

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\omega^2}{v^2} \psi = 0$$

Let
$$z = kr$$

where $k = \omega/v$
$$\frac{\partial^2 \psi}{\partial z^2} + \frac{1}{z} \frac{\partial \psi}{\partial z} + \psi(z) = 0$$

• Solutions:
$$J_0(z) \sim \sqrt{\frac{2}{\pi}} \frac{\cos(z-\pi/4)}{\sqrt{z}}$$
 and $Y_0(z) \sim \sqrt{\frac{2}{\pi}} \frac{\sin(z-\pi/4)}{\sqrt{z}}$

Waves in Three Dimensions

Wave equation in spherical coordinates:

ation in spherical coordinates:
$$\nabla^2 \psi = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \psi) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

• When $\frac{\partial^2 \psi}{\partial t^2} = -\omega^2 \psi$ this is

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(r\psi) + \frac{\omega^2}{v^2}\psi = 0$$

Solutions are of the form:

$$\psi(r,t) = A \frac{e^{ikr}}{r} \cos \omega t$$

Boundary Conditions in Two and Three Dimensions

- When a boundary condition imposes the restriction that $\psi(R,t)=0$ then the function must have a node at r=R.
- Analogous to the 1-dimensional case:

This imposes the requirement that kR is a root of the equation f(kR) = 0 which implies that $k_n = \frac{\omega_n}{v} = z_n/R$ where z_n are roots of f(z) = 0.

That's all for now...

- Study these topics make sure you understand the examples and assignment questions.
- Send e-mail if you would like specific examples discussed before the exam next Wednesday.

Next topics: waves applied to optics.