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Reflection from Boundaries

• Consider a pulse propagating on a string, moving to 
the right, towards a fixed end:

• We know that this can be represented as a linear 
combination of normal modes:

� �, � = � �� sin �
�
� cos��

�

���
• Since the problem is linear, we just need to analyze 

one normal mode to see what happens next…

�



Reflection from a Boundary

• Considering just one normal mode:

�� �, � = �� sin �
�
� cos��

• Trigonometric identity:

sin � cos � = 1
2 sin � + � + sin � − �

• Re-write this as two travelling waves:

�� �, � = ��
2 sin �
�

� + ��� + sin �
�
� − ���

• At the end of the string, � = �, this is:

�� �, � = ±��
2 sin ��� − sin ��� = 0



Reflection from a Boundary

�� �, � = ±��
2 sin ��� − sin ��� = 0

• The component of the wave that moves to the left has a 
displacement that is equal and opposite to the 
displacement of the incident wave.

Another way to see this:

• The function � �, � that describes the shape of the 
string has two components that move in opposite 
directions: � �, � = �� �, � + ��(�, �)

• At the end of the string, the two components are equal 
and opposite, which ensures that the boundary condition 
� �, � = 0 is satisfied.



Reflection from a Boundary

• Wave equation for the potential difference between the 

conductors along a transmission line:

"#$
"�# = 1

�#
"#$
"�#

• If the inner and outer conductor are shorted at � = �, then 

the potential difference is zero.

$ �, � = 0
• A reflected pulse will propagate back towards the source with 

opposite amplitude.

�



Reflection from a Boundary



Reflection from a Boundary

• If the end of the transmission line is open, then the incident 

pulse produces a voltage across the end:

$ �, � = $% �
• This acts like a source for a wave propagating to the left.

• The reflected wave is not inverted

�



Reflection from a Boundary



Reflection from a Boundary

• So far we have considered just two cases:

– Reflection with inversion

– Reflection without inversion

• We can draw a graphical description of the incident 

and reflected waves:

�

�
Slope = 1/� Leading edge

Trailing edge

Incident and reflected pulses 

do not overlap.



Reflection from a Boundary

• We can draw a graphical description of the incident 

and reflected waves:

�

�
Slope = 1/�

Incident and reflected pulses 

overlap briefly.



Reflection from a Discontinuity

• Suppose a pulse propagates on a string with an abrupt 
change in mass per unit length:

• Velocity in each section:

�� = '/(� �# = '/(#
• The function �(�, �) needs three components:

– Incident pulse:         �� � − ���
– Reflected pulse:       �� � + ���
– Transmitted pulse:  �)(� − �#�)

• Boundary conditions:

– Continuity of the function � �, � and its derivative.

��



Reflection from a Discontinuity

• Function for the wave in the string with (�:

�� �, � = �� � − ��� + �� � + ���
• Function for the wave in string with (#:

�# �, � = �) � − �#�
• Continuity at the boundary at � = 0:

�� 0, � + �� 0, � = �) 0, �
"��
"� + "��

"� = "�)
"�

• But there is a relation between the derivatives:

– Let * = � − ��
– Then 

+,
+- = +,

+.
+.
+- = +,

+. and  
+,
+) = +,

+. 	
+.
+) = −� +,

+.



Reflection from a Discontinuity

"�
"� = ±1

�
"�
"�

• Continuity at the boundary at � = 0:

�� 0, � + �� 0, � = �) 0, �
"��
"� + "��

"� = "�)
"�

− 1
��

"��
"� + 1

��
"��
"� = − 1

�#
"�)
"�

• This can be written:

�#��0 0, � − �#��0 0, � = ���)0 �
• Now we can integrate with respect to �:

�#�� 0, � − �#�� 0, � = ���)(0, �)



Reflection from a Discontinuity

�� 0, � + �� 0, � = �) 0, �
�#�� 0, � − �#�� 0, � = ���)(0, �)

• Since  we specified the initial function ��(�, �) we just 

have two equations in two unknowns:

−�� + �) = ���#�� + ���) = �#��−1 1
�# ��

���) = ���#��
�� = ��

�# − ��
�# + ��

�) = ��
2�#

�# + ��



Reflection from a Discontinuity

• Reflection coefficient:  1 = (�# − ��)/(�# + ��)
• Transmission coefficient:  2 = 2�#/(�# + ��)
• Example: (# > (� so �# < ��

��

�� �#

(This special case applies to the string, but not in general…)



Example from Optics

• The index of refraction is defined as the ratio:

� = 5
�

• Speed of light in a dense medium:  � = 5/�
• Reflection coefficient:

1 = �# − ��
�# + ��

= 1 �#⁄ − 1/��
1 �#⁄ + 1/��

= �� − �#
�� + �#

• Phase reversal when �# > ��, but not when �� > �#
• Transmission coefficient:

2 = 2�#
�# + ��

= 2/�#
�� + �#



Reflection

Reflection with phase inversion:

Reflection without phase inversion:

� > 1

� > 1



Reflection from a Discontinuity

• But be careful!  So far we have assumed that the tension on 

both sides of the boundary are equal.

�� = '/(� �# = '/(#
• In other situations this is not always the case:

• The restoring force can be produced by different physical 

effects.

• Next, let’s look at how energy propagates in the medium…

Solid Liquid Gas

� = 7/1
7 is Young’s modulus

� = 8/1
8 is the bulk modulus

� = 9:/1
: is the gas pressure

9 is a property of the gas.



Energy Carried by a Pulse

• Potential energy is stored in an elastic string when it is stretched 
into the shape of a pulse.

• Potential energy in one small interval of length:

• Work needed to stretch the string in the vertical direction:

∆< = '= �
∆�

∆,

>
?� = 1

2
'
∆� 	 ∆� #

• Work per unit length:

∆<
∆� = 1

2 	'	 ∆�
∆�

#

'

'
∆�

∆�



Energy Carried by a Pulse

• Work per unit length:

∆<
∆� = 1

2 	'	 ∆�
∆�

#

• If the pulse maintains this shape but moves with velocity �
then this is the potential energy per unit length.

• Total potential energy is

@ = 1
2'= "�

"�
#
?�

• Written in terms of linear density and velocity, ' = (�#,

@ = 1
2(�# = "�

"�
#
?�



Power Carried by a Wave

• A pulse has a finite amount of energy that moves with speed �
• It is also convenient to describe harmonic waves

� �, � = � cos 2
�
A − ��

which extend in space over many wavelengths

• First derivative:

�0 � = −2
�
A sin 2
�

A
• Energy in one wavelength (cycle): 

@0 = 1
2(�# = "�

"�
#B

>
?� = 1

2(�# A
2

2
�
A

#

= 1
2A(�#�#



Power Carried by a Wave

• Energy per cycle:

@′ = 1
2 A(�#�#

• Cycles passing a point in space per unit time: �/A
• Average power carried by the wave:

D = 1
2(�#�#� = 1

2E�#�#

• Depends on the characteristic impedance of the medium

– In this case, E = (� = '/�
• Also depends on the properties of the wave

– Amplitude and frequency



Transmission and Reflection

• For the pulse propagating on the string we had:

1 = (�# − ��)/(�# + ��)2 = 2�#/(�# + ��)
• We want to write this in terms of the properties of the 

medium, not just the velocity.

• In this case,

E� = ' ��⁄ = '(� E# = ' �#⁄ = '(#
• General expressions:

F = GH − GI
GH + GI

J = IGH
GH + GI



Reflections in Elastic Media

• Consider reflection coefficients for a typical interface:

– Air, �K�� = 340N O⁄ , EK�� = 417	 QR/O
– Water, �SK)T� = 1500	N/O, ESK)T� = 1.47 × 10X	 QR/O

• Reflection coefficient:

1 = E� − E#E� + E# = −0.9994 ≈ −1
• Transmission coefficient:

2 = 2E�
E� + E#

= 0.0006
• How much power is transferred across the interface?

Solid Liquid Gas

� = 7/1
7 is Young’s modulus

7~10�>	]/N#

� = 8/1
8 is the bulk modulus

8~10^]/N#

� = 9:/1
: is the gas pressure

9 is a property of the gas.

For air, 9:~1.42 × 10_]/N#



Transmitted Power

• Transmitted amplitude:     �) = 2�
• Power carried by a wave:

D = 1
2E�#�#

• Incident power:

D� = 1
2E��#�#

• Transmitted power:

D) = 1
2E#�# 2� # = 2E#E�#

E� + E# # �#�#

D)
D�

= 4E�#
E� + E# #

• Reflected power: D� = D� − D) (conserves energy).


