PURDUE D) epaRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 17 — French, Chapter 7
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Midterm Exam:

Date: Wednesday, March 6"
Time: 3:00 —10:00 pm
Room: PHYS 203

Material: French, chapters 1-8



Reflection from Boundaries

* Consider a pulse propagating on a string, moving to
the right, towards a fixed end:

e il

%

 We know that this can be represented as a linear
combination of normal modes:

- nmwx
y(x, t) = Z A, sin (T) cos wt

n=1
* Since the problem is linear, we just need to analyze
one normal mode to see what happens next...



Reflection from a Boundary
e Considering just one normal mode:
v, (x,t) = A, sin (@) cos wt
n ) n L

 Trigonometric identity:

%[sin(cx + B) + sin(a — B)]

 Re-write this as two travelling waves:

Vn(x,t) = 5 [sm (@ + Wy ) + sin (nLLx — wnt)]

e At the end of the string, x = L, this is:

sina cosf =

Yn(L,t) = i% [sin(wyt) — sin(w,t)] =0



Reflection from a Boundary

Ya(L,t) = iAz—n [sin(wyt) — sin(w,t)] =0

e The component of the wave that moves to the left has a
displacement that is equal and opposite to the
displacement of the incident wave.

Another way to see this:

* The function y(x, t) that describes the shape of the
string has two components that move in opposite
directions: y(x,t) = y;(x,t) + y,(x, t)

e At the end of the string, the two components are equal

and opposite, which ensures that the boundary condition
y(L,t) = 0 is satisfied.



Reflection from a Boundary

O

 Wave equation for the potential difference between the
conductors along a transmission line:
0%V 1 9%V
0x2  v?2 Jt?
e |fthe inner and outer conductor are shorted at x = L, then
the potential difference is zero.
V(L,t) =0
* Areflected pulse will propagate back towards the source with
opposite amplitude.



Reflection from a Boundary




Reflection from a Boundary

e |f the end of the transmission line is open, then the incident

pulse produces a voltage across the end:
V(L t) =V (¢)

e This acts like a source for a wave propagating to the left.

e The reflected wave is not inverted



Reflection from a Boundary




Reflection from a Boundary

e So far we have considered just two cases:

— Reflection with inversion
— Reflection without inversion

 We can draw a graphical description of the incident

and reflected waves:

Incident and reflected pulses

do not overlap.
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Reflection from a Boundary

 We can draw a graphical description of the incident
and reflected waves: L

and reflected pulses
overlap briefly.
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Reflection from a Discontinuity

Suppose a pulse propagates on a string with an abrupt
change in mass per unit length:

- |

Velocity in each section:

v =T/ vy =T/
The function y(x, t) needs three components:
— Incident pulse: y;(x —vyt)

— Reflected pulse:  y,.(x + v;t)
— Transmitted pulse: y;(x — v,t)

Boundary conditions:
— Continuity of the function y(x, t) and its derivative.



Reflection from a Discontinuity

Function for the wave in the string with u;:
y1(x,t) = yi(x — v1t) + yr (X + v18)
Function for the wave in string with u,:
y2(x,t) = ye(x — vat)
Continuity at the boundary at x = O:
vi(0,t) +¥-(0,t) = y:(0,¢)
0y;  0yr 0y

6‘x+0x=0x

But there is a relation between the derivatives:
— Letu =x — vt

oy
— Then dx Odudx Ou

dy du _ dy dy 0y du _ dy
and gt odu It vau




Reflection from a Discontinuity

dy 1oy

ax Tvac

e Continuity at the boundary at x = 0:
yi(0,t) + ¥,(0,¢) = y¢(0,¢t)

i 9 _ Oy

dx Jdx  Ox
10y; 10y, 10y,
v, 0t vy 0t v, Ot

e This can be written:
129 (0,8) — vo¥7(0, 1) = v1y{(¢)
e Now we can integrate with respect to t:
v2Y;(0,8) — v23,(0,t) = v1y:(0,0)



Reflection from a Discontinuity

yi(0,t) + ¥-(0,t) = y.(0,¢)
v,Yi(0,t) — v,(0,8) = v1y:(0, t)
e Since we specified the initial function y;(x, t) we just
have two equations in two unknowns:
—Vr t Yt = Vi
VoYr + V1Y = V2Y;

(o, +) 060 =)




Reflection from a Discontinuity

» Reflection coefficient: p = (v, —v) /(v + v4)
* Transmission coefficient: T = 2v,/(v, + V1)

e Example: uy > U sov, < vy _ [

(This special case applies to the string, but not in general...)



Example from Optics

The index of refraction is defined as the ratio:

C
n=-—
v

Speed of light in a dense medium: v = c¢/n
Reflection coefficient:

vz_vl _ 1/n2_1/n1 _n1

p:

Transmission coefficient:

T =

2772 2/7’12

U2+U1 n1+n2

vy +v; 1/n,+1/n; ngy+n,
Phase reversal when n, > n,, but not when n; > n,



Reflection

Reflection with phase inversion:

—\/\/

Reflection without phase inversion:




Reflection from a Discontinuity

e But be careful! So far we have assumed that the tension on
both sides of the boundary are equal.

vy =T/uy vy =T /Uy

e |n other situations this is not always the case:

T T

v=.Y/p v=4K/p v =4yp/p
Y is Young’s modulus K is the bulk modulus p is the gas pressure

y is a property of the gas.

 The restoring force can be produced by different physical
effects.

 Next, let’s look at how energy propagates in the medium...



Energy Carried by a Pulse

Potential energy is stored in an elastic string when it is stretched
into the shape of a pulse.

Potential energy in one small interval of length: T

Work needed to stretch the string in the vertical direction:
Ay
y

AW—TJ dy = —— (Ay)?
=T) = y

Work per unit length:

AW _ 1 (Ay\]
Ax 2 \Ax



Energy Carried by a Pulse

Work per unit length:

aw _ 1 (Y’
Ax 2 \Ax

If the pulse maintains this shape but moves with velocity v
then this is the potential energy per unit length.

Total potential energy is

2
1 dy

Written in terms of linear density and velocity, T = uv?,

2
1 dy

a2

U—Z,uv f(@x) dx



Power Carried by a Wave

A pulse has a finite amount of energy that moves with speed v

It is also convenient to describe harmonic waves

27X
y(x,t) = Acos <T — a)t)

which extend in space over many wavelengths

First derivative:

() = 2mA  2mx
yi(x) = /151n/1

Energy in one wavelength (cycle):

1 2 (9y\° 1 . 1[2rA\°
I — _ 2 —_— = — 2 [ ——
Ui=gmy jo <8x) dx = v 2( pl )

1
= — Auw?A?
5 M



Power Carried by a Wave

Energy per cycle:
1
U' = Exl,ua)zAz
Cycles passing a point in space per unit time: v/A

Average power carried by the wave:

1 1
P = iuwzflzv = EZa)ZA2

Depends on the characteristic impedance of the medium
— Inthiscase, Z = uv =T /v

Also depends on the properties of the wave

— Amplitude and frequency



Transmission and Reflection

For the pulse propagating on the string we had:
p=Wz—v1)/(v2 + V1)
T =2v,/(v, + 17)
We want to write this in terms of the properties of the
medium, not just the velocity.

In this case,

Zy=T/vy =Ty Z, =T/vy, =Tu,

General expressions:
Z1— 2,

"7+ 2,
27,

T =
Z,+2Z,

p




Reflections in Elastic Media

I T N

v=4Y/p v=4K/p v=4vp/p
Y is Young’s modulus K is the bulk modulus p is the gas pressure
Y~101% N/m? K~10°N/m? y is a property of the gas.

For air, yp~1.42 X 10°N /m?

Consider reflection coefficients for a typical interface:
— Air, v, = 340m/s, Z 5 = 417 \Jkg/s

— Water, Vyqrer = 1500 m/s, Zyqrer = 1.47 X 10° \[kg/s
Reflection coefficient:

1 — 2y -
e Transmission coefficient:
— 221 = 0.0006
t= Z,+7Z,

How much power is transferred across the interface?



Transmitted Power

Transmitted amplitude: A, =74
Power carried by a wave:

1
P = EZ(UZAZ
Incident power:
1
Pi — §Z1a)2A2

Transmitted power:

1 27,7%
Py = =Z,w*(tA)* = w?A?
t =5 2w (TA) (Z, + Z,)?
P, 477

P; B (Zy + Z,)*
Reflected power: P. = P; — P,

(conserves energy).



