

Physics 42200 Waves & Oscillations

Lecture 17 – French, Chapter 7

Spring 2013 Semester

Matthew Jones

Midterm Exam:

Date: Wednesday, March 6th

Time: 8:00 - 10:00 pm

Room: PHYS 203

Material: French, chapters 1-8

Wave Propagation

 We are considering the propagation of a disturbance on a continuous string, far from the ends:

- For convenience, we can define t=0 to be the point where the pulse passes x=0.
- Suppose that at this time the pulse has a Gaussian profile:

$$g(x) \sim \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

• Let's fix this up so that the dimensions are more physical...

Wave Propagation

Gaussian pulse:

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2}$$

— Normalized to unit area:

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} \, dx = 1$$

– Characteristic width:

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x^2 e^{-x^2/2\sigma^2} dx = \sigma^2$$

— Change to dimensionless variables:

Let
$$u = x/\sigma$$
, then $dx = \sigma du$

and
$$g(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$$

Fourier Transform

 The amplitudes of the different frequency components of the pulse are given by the Fourier transform:

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cos(kx) dx$$
$$= \frac{1}{2\pi\sigma} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} \cos(kx) dx$$

From your table of integrals:

$$\int_{-\infty}^{\infty} e^{-ax^2} \cos bx \, dx = \sqrt{\frac{\pi}{a}} e^{-b^2/4a}$$

• Substituting $a = 1/2\sigma^2$ and b = k gives:

$$A(k) = \frac{1}{\sqrt{2\pi}}e^{-k^2\sigma^2/2}$$

The frequency components are also Gaussian

Notes about Fourier Transforms

Fourier cosine transform:

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cos(kx) \, dx$$

Fourier sine transform:

$$B(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \sin(kx) dx$$

- The factor $1/\sqrt{2\pi}$ is there for convenience.
 - What matters is how to relate A(k) and B(k) to the original function
 - With this definition,

$$g(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty A(k) \cos(kx) \, dk + \sqrt{\frac{2}{\pi}} \int_0^\infty B(k) \sin(kx) \, dk$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty A(k) \cos(kx) \, dk + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty B(k) \sin(kx) \, dk$$

Notes about Fourier Transforms

For the Gaussian pulse,

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2}$$

• The amplitudes of the frequency components are:

$$A(k) = \frac{1}{\sqrt{2\pi}} e^{-k^2 \sigma^2/2}, \ B(k) = 0$$

- When the pulse is narrow, $\sigma \ll 1$, then the exponent in A(k) is large for a large range of k
 - Since $\omega = v/k$, a narrow pulse has a wide range of frequency components.
- Conversely, a wide pulse has a narrow range of frequencies.

- Light is characterized by an oscillating electric and magnetic field.
- When we treat photons as particles, we think of them as being localized at a point in space that moves at the speed of light.
 - Localized at x = 0 implies a wide range of frequencies
 - A narrow range of frequencies implies that the photon is not localized in space...
- How, then, should we think about photons?

A photon can be described as a localized oscillation:

At
$$x = 0$$
, $E(t) = \begin{cases} E_0 \cos(\omega t) & \text{when } |t| < T \\ 0 & \text{otherwise} \end{cases}$

At
$$t = 0$$
, $E(x) = \begin{cases} E_0 \cos(kx) & \text{when } |x| < cT \\ 0 & \text{otherwise} \end{cases}$

$$A(k') = \frac{E_0}{\sqrt{2\pi}} \int_{-cT}^{cT} \cos(kx) \cos(k'x) dx$$

$$A(k') = \frac{E_0}{\sqrt{2\pi}} \int_{-cT}^{cT} \cos(kx) \cos(k'x) dx$$

Trigonometric identity:

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$A(k') = \frac{E_0}{\sqrt{2\pi}} \left[\frac{\sin((k - k')cT)}{k - k'} + \frac{\sin((k + k')cT)}{k + k'} \right]$$

$$k = \frac{2\pi}{\lambda} = 1.571 \ cm^{-1}$$

Frequency Representation

- Why would we want to represent a function in terms of its frequency components?
 - Both representations contain the same information
- Physical properties can depend on the frequency
- Examples:
 - Maximum frequency for discrete masses

$$\omega_n = 2\omega_0 \sin\left(\frac{n\pi}{2(N+1)}\right)$$

$$\omega_{max} = 2\omega_0$$

– Speed of light depends on wavelength: $v = c/n(\lambda)$

Time Dependence

• The time-dependent description of the propagating pulse is, in the case where B(k) = 0,

$$y(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) \cos(kx - \omega t) dk$$
$$\omega = v(k)/k$$

- Phase velocity is $v(k) = \omega k$ but this is the speed at which the individual harmonic waves move.
- How fast does the pulse move?

Group Velocity

- Consider two harmonic waves with wavenumbers k_1 and k_2 which have frequencies ω_1 and ω_2
- The phase velocity of each wave is

$$v_1 = \omega_1/k_1$$

$$v_2 = \omega_2/k_2 \neq v_1$$

• Superposition:

$$y(x,t) = A[\cos(k_1x - \omega_1t) + \cos(k_2x - \omega_2t)]$$

• Trigonometric identity:

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$
$$y(x, t) = 2A \cos(kx - \omega t) \cos \left(\frac{\Delta kx}{2} - \frac{\Delta \omega t}{2}\right)$$

Group Velocity

$$y(x,t) = 2A\cos(kx - \omega t)\cos\left(\frac{\Delta kx}{2} - \frac{\Delta \omega t}{2}\right)$$

Fast component with velocity $v = \omega/k$

Slow component with velocity $v' = \Delta \omega / \Delta k$

We generalize this to define the group velocity as

$$v_g = \frac{d\omega}{dk}$$

which we evaluate at the average frequency, k.

Example

Group velocity same as phase velocity.

$$\lambda = 5 cm$$

$$\Delta \lambda = 0.1 cm$$

$$t = 0$$

$$t = 1 ns$$

Example

$$v = \frac{\omega}{k} = 30 \, cm/ns$$
$$\frac{\Delta \omega}{\Delta k} = 15 \, cm/ns$$

$$\lambda = 5 cm$$

$$\Delta \lambda = 0.1 cm$$

$$t = 0$$

$$t = 1 ns$$

Example from Wikipedia

- Green points are at the minima between the pulses and move with the group velocity.
- The red point is constant in phase and moves with the phase velocity.
- The group velocity determines the rate of energy transfer.

Dispersion

- Different frequencies propagate with different speeds.
- For light, the speed depends on the index of refraction:

$$v = \frac{\omega}{k} = \frac{c}{n}$$

- This is the phase velocity.
- The index of refraction can be expressed as a function of wavelength:

$$\omega = vk = \frac{c}{n(k)}k = \frac{c}{n(\lambda)}\frac{2\pi}{\lambda}$$

Let's calculate the group velocity...

Dispersion

Frequency, expressed as a function of wavelength:

$$\omega(k) = kv(k)$$

Group velocity:

$$v_g = \frac{d\omega}{dk} = v(k) + k\frac{dv}{dk}$$

Phase velocity:

$$v(k) = \frac{c}{n(k)} \qquad \frac{dv}{dk} = -\frac{c}{n^2} \frac{dn}{dk}$$
$$v_g = \frac{c}{n(k)} \left(1 - \frac{k}{n} \frac{dn}{dk} \right)$$
$$= c \left(n - \lambda \frac{dn}{d\lambda} \right)^{-1}$$

Optical Dispersion

