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Wave Propagation

• We are considering the propagation of a disturbance on a 
continuous string, far from the ends:

• For convenience, we can define � = 0 to be the point 
where the pulse passes � = 0.

• Suppose that at this time the pulse has a Gaussian 
profile:
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• Let’s fix this up so that the dimensions are more 
physical…
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Wave Propagation
• Gaussian pulse:

� � = 1
2	� 
��
/��


– Normalized to unit area:
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– Characteristic width:
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– Change to dimensionless variables:
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Fourier Transform

• The amplitudes of the different frequency components of the 
pulse are given by the Fourier transform:
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• From your table of integrals:
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• Substituting # = 1/2�� and " = � gives:
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• The frequency components are also Gaussian



Notes about Fourier Transforms
• Fourier cosine transform:
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• Fourier sine transform:
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• The factor 1/ 2	 is there for convenience.

– What matters is how to relate �(�) and '(�) to the original function

– With this definition,
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Notes about Fourier Transforms

• For the Gaussian pulse,
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• The amplitudes of the frequency components are:
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�&
�
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• When the pulse is narrow, � ≪ 1, then the exponent 
in �(�) is large for a large range of �
– Since - = �/�, a narrow pulse has a wide range of 

frequency components.

• Conversely, a wide pulse has a narrow range of 
frequencies.



Another Example

• Light is characterized by an oscillating electric and 

magnetic field.

• When we treat photons as particles, we think of 

them as being localized at a point in space that 

moves at the speed of light.

– Localized at � = 0 implies a wide range of frequencies

– A narrow range of frequencies implies that the photon is 

not localized in space…

• How, then, should we think about photons?



• A photon can be described as a localized oscillation:

At � = 0, . � = /.* cos -� 	when	 � 4 5
0														otherwise

At � = 0,. � = /.* cos �� 	when	 � 4 85
0														otherwise
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Another Example



Another Example

� �′ = .*
2	� cos ��

:;

�:;
cos �<� ��

• Trigonometric identity:

cos = cos > = 1
2 cos = − > + cos = + >

� �< = .*
2	

sin � − �< 85
� − �′ + sin � + �< 85

� + �′



Another Example
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A = 1.571	8@��
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Frequency Representation

• Why would we want to represent a function in terms 

of its frequency components?

– Both representations contain the same information

• Physical properties can depend on the frequency

• Examples:

– Maximum frequency for discrete masses

-F = 2-* sin G	
2(H + 1)

-I!� = 2-*
– Speed of light depends on wavelength: � = 8/G A



Time Dependence

• The time-dependent description of the propagating 

pulse is, in the case where ' � = 0,

J �, � = 1
2	� �(�) cos �� − -�
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- = �(�)/�
• Phase velocity is � � = -� but this is the speed at 

which the individual harmonic waves move.

• How fast does the pulse move?



Group Velocity

• Consider two harmonic waves with wavenumbers �� and 
�� which have frequencies -� and -�

• The phase velocity of each wave is

�� = -�/���� = -�/�� ≠ ��
• Superposition:

J �, � = � cos ��� − -�� + cos ��� − -��
• Trigonometric identity:

cos = + cos> = 2 cos = + >
2 cos = − >

2
J �, � = 2� cos �� − -� cos Δ��

2 − Δ-�
2



Group Velocity

J �, � = 2� cos �� − -� cos Δ��
2 − Δ-�

2
Fast component 

with velocity 

� = -/�
Slow component 

with velocity 

�′ = Δ-/Δ�
We generalize this to define the group velocity as

�N = �-
��

which we evaluate at the average frequency, �.



Example

�			(8@)

Group velocity same as 

phase velocity.

A = 5	8@
ΔA = 0.1	8@

� = 0

� = 1	GO



Example
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� = -
� = 30 8@ GO⁄

Δ-
Δ� = 15	8@/GO

A = 5	8@
ΔA = 0.1	8@

� = 0
� = 1	GO



Example from Wikipedia

• Green points are at the minima between the pulses 

and move with the group velocity.

• The red point is constant in phase and moves with 

the phase velocity.

• The group velocity determines the rate of energy 

transfer.



Dispersion

• Different frequencies propagate with different 
speeds.

• For light, the speed depends on the index of 
refraction:

� = -
� = 8

G
• This is the phase velocity.

• The index of refraction can be expressed as a 
function of wavelength:

- = �� = 8
G(�) � = 	 8

G A
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• Let’s calculate the group velocity…



Dispersion

• Frequency, expressed as a function of wavelength:

- � = ��(�)
• Group velocity:
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• Phase velocity:
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Optical Dispersion


