PURDUE D) epaRTMENT OF Physics

Physics 42200
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Midterm Exam:

Date: Wednesday, March 6"
Time: 3:00 —10:00 pm
Room: PHYS 203

Material: French, chapters 1-8



Wave Propagation

We are considering the propagation of a disturbance on a
continuous string, far from the ends:

N

For convenience, we can definet = 0 to be the point
where the pulse passes x = 0.

Suppose that at this time the pulse has a Gaussian
profile:
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g(x)N\/T_ne_

Let’s fix this up so that the dimensions are more
physical...
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Wave Propagation

e Gaussian pulse:

) 2
ex/Za
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— Normalized to unit area:
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— Characteristic width:
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— Change to dimensionless variables:

Let u = x /0, then dx = odu

and g(u) = \/%_ne‘”z/z



Fourier Transform

The amplitudes of the different frequency components of the
pulse are given by the Fourier transform:
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From your table of integrals:
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Substitutinga = 1/20% and b = k gives:

1
A(k) = Nt e~k*0%/2

The frequency components are also Gaussian



Notes

e Fourier cosi

about Fourier Transforms

ne transform:

A(k) = ) g(x) cos(kx) dx

=l

* Fourier sine transform:

) g(x) sin(kx) dx

e The factor 1/v2m is there for convenience.
— What matters is how to relate A(k) and B (k) to the original function

— With this

definition,

gx) = [_f A(k) cos(kx) dk + \/:f B(k) sin(kx) dk
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A(k) cos(kx) dk + — J B (k) sin(kx) dk
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Notes about Fourier Transforms

For the Gaussian pulse,

—x?/20%

e

(x) =
7 V2mo
The amplitudes of the frequency components are:
_ 1 k2522 —
A(k) = 5=¢ , B(k) =0
When the pulse is narrow, o < 1, then the exponent
in A(k) is large for a large range of k

— Since w = v/k, a narrow pulse has a wide range of
frequency components.

Conversely, a wide pulse has a narrow range of
frequencies.



Another Example

e Lightis characterized by an oscillating electric and
magnetic field.

* When we treat photons as particles, we think of
them as being localized at a point in space that

moves at the speed of light.

— Localized at x = 0 implies a wide range of frequencies

— A narrow range of frequencies implies that the photon is
not localized in space...

e How, then, should we think about photons?



Another Example

A photon can be described as a localized oscillation:

E(t) 4
E,
-T 0 +T

Ey cos(wt) when |t| < T

i ®) 0 otherwise
Att =0,E(x) = {Eo cos(kx) when lel <cT
0 otherwise

EO cT
A(k") =— cos(kx) cos(k'x) dx
(k) == _cosCkx) cos(k'x)



Another Example

A(k") = cos(kx) cos(k'x) dx

EO cT
V 27-[ f_cT

e Trigonometric identity:

cosacosfB = %(COS(CX — B) + cos(a + B))
E, sin((k — k’)cT) sin((k + k’)cT)
Tl k=K T k+k

A(k') =



Another Example
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Frequency Representation

 Why would we want to represent a function in terms
of its frequency components?

— Both representations contain the same information
* Physical properties can depend on the frequency
e Examples:

— Maximum frequency for discrete masses

_ nm
Wy, = 2w Sin 2N+ 1)
Wmax = 20

— Speed of light depends on wavelength: v = ¢/n(1)




Time Dependence

The time-dependent description of the propagating
pulse is, in the case where B(k) = 0,

y(x, t) = \/%n[:A(k) cos(kx — wt) dk

w=v(k)/k

Phase velocity is v(k) = wk but this is the speed at
which the individual harmonic waves move.

How fast does the pulse move?



Group Velocity

Consider two harmonic waves with wavenumbers k, and
k, which have frequencies w; and w,
The phase velocity of each wave is

V1 = wq/kq

Uy = Wy /ky #F 14
Superposition:
y(x,t) = Alcos(kix — wqt) + cos(k,x — w,t)]

Trigonometric identity:

cosa + cosf3 =2cos(a;'8>cos(“;[>’>

Akx Awt
y(x,t) = 2A cos(kx — wt) cos (T — T)




Group Velocity

Akx Awt
y(x,t) = 2A cos(kx — wt) cos > >
\ J

k )
Fast component !

with velocity Slow component

|

v=w/k with velocity
v = Aw/Ak
We generalize this to define the group velocity as
dw
v, = —
v dk

which we evaluate at the average frequency, k.



Example

Group velocity same as

W /\/\N phase velocity.

A=5cm
Al =0.1cm
t=20

. 4

L G [ - U ! w A

8_IIII|IIII|III

o]
o

40 60 80 100

'
[
=1
o]
L]

1 1 1 1 1 1 1 1 1 1 1
40 60 80 100

x (cm)



Example
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Example from Wikipedia
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 Green points are at the minima between the pulses
and move with the group velocity.

 The red point is constant in phase and moves with
the phase velocity.

* The group velocity determines the rate of energy
transfer.



Dispersion

Different frequencies propagate with different
speeds.

For light, the speed depends on the index of
refraction:

w C
V=—=—

k n
This is the phase velocity.

The index of refraction can be expressed as a
function of wavelength:
C 27

k=
n(k) n(i) A
Let’s calculate the group velocity...

w = vk =



Dispersion

* Frequency, expressed as a function of wavelength:
w(k) = kv(k)
e Group velocity:

_da)_ (k)+kdv
Yo T ak TV dk

 Phase velocity:

C
vl =75 dk = nZdk




Optical Dispersion
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