

Physics 42200 Waves & Oscillations

Lecture 17 – French, Chapter 6

Spring 2013 Semester

Matthew Jones

Midterm Exam:

Date: Wednesday, March 6th

Time: 8:00 - 10:00 pm

Room: PHYS 203

Material: French, chapters 1-8

Fourier Analysis

Wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

• Boundary conditions at t = 0:

$$y(0,t) = y(L,t) = 0$$

Normal modes of oscillation:

$$\omega_n = \frac{n\pi v}{L}$$

Wavelengths of normal modes:

$$\lambda_n = \frac{2L}{n}$$

Fourier Analysis

Normal modes of oscillation:

$$y_n(x,t) = \sin\left(\frac{n\pi x}{L}\right)\cos(\omega_n t)$$

General solution:

$$y(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t - \delta_n)$$

• The parameters A_n and δ_n are determined from initial conditions. At t=0,

$$y(x,0) = u(x) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$$

Fourier Analysis

Fourier's method:

$$B_k = \frac{2}{L} \int_0^L \sin\left(\frac{k\pi x}{L}\right) u(x) dx$$

• Example: (*French 6-12*):

- The string has tension T and mass per unit length μ
- If the string is released from rest, what is y(x,t)?

Initial displacement is described by the function

$$u(x) = \begin{cases} \frac{2hx}{L} & 0 < x < L/2\\ 2h\left(1 - \frac{x}{L}\right) & L/2 < x < L \end{cases}$$

• The string is released from rest, so v(x) = 0.

Fourier coefficients:

$$B_{k} = \frac{2}{L} \int_{0}^{L} \sin\left(\frac{k\pi x}{L}\right) u(x) dx$$

$$= \frac{2}{L} \int_{0}^{L/2} \sin\left(\frac{k\pi x}{L}\right) \left(\frac{2hx}{L}\right) dx$$

$$+ \frac{2}{L} \int_{L/2}^{L} \sin\left(\frac{k\pi x}{L}\right) (2h(1 - x/L)) dx$$

$$= \frac{4h}{L^{2}} \int_{0}^{L/2} x \sin\left(\frac{k\pi x}{L}\right) dx - \frac{4h}{L^{2}} \int_{L/2}^{L} x \sin\left(\frac{k\pi x}{L}\right) dx + \frac{4h}{L} \int_{L/2}^{L} \sin\left(\frac{k\pi x}{L}\right) dx$$

- This is getting messy...
- Don't get your table of integrals just yet...
- Think about the symmetry of the problem.

- Integrals with even values of k will be zero.
 - This is because $\sin(k\pi x/L)$ is odd but u(x) is even when reflected about the point x=L/2.
- When k is odd, we can just double the value of the integral from 0 to L/2.

• When *k* is odd,

$$B_k = \frac{2}{L} \int_0^L \sin\left(\frac{k\pi x}{L}\right) u(x) dx = \frac{4}{L} \int_0^{L/2} \sin\left(\frac{k\pi x}{L}\right) \left(\frac{2hx}{L}\right) dx$$
$$= \frac{8h}{L^2} \int_0^{L/2} x \sin\left(\frac{k\pi x}{L}\right) dx$$

Now get your table of integrals:

(91)
$$\int x \sin(ax) dx = -\frac{x}{a} \cos ax + \frac{1}{a^2} \sin ax$$

$$B_{k} = -\frac{8h}{L^{2}} \frac{Lx}{k\pi} \cos\left(\frac{k\pi x}{L}\right) + \frac{8h}{L^{2}} \frac{L^{2}}{k^{2}\pi^{2}} \sin\left(\frac{k\pi x}{L}\right)\Big|_{0}^{L/2}$$
$$= \pm \frac{8h}{k^{2}\pi^{2}}$$

$$B_1 = \frac{8h}{\pi^2} = 0.8106 \ h$$

$$B_1 = \frac{8h}{\pi^2} = 0.8106 \ h$$

$$B_3 = -\frac{8h}{9\pi^2} = -0.0901 \ h$$

$$B_1 = \frac{8h}{\pi^2} = 0.8106 \ h$$

$$B_3 = -\frac{8h}{9\pi^2} = -0.0901 \ h$$

$$B_5 = \frac{8h}{25\pi^2} = 0.0324 \ h$$

$$B_1 = \frac{8h}{\pi^2} = 0.8106 \ h$$

$$B_3 = -\frac{8h}{9\pi^2} = -0.0901 \ h$$

$$B_5 = \frac{8h}{25\pi^2} = 0.0324 \ h$$

$$B_7 = -\frac{8h}{49\pi^2} = -0.0165 \ h$$

$$B_1 = \frac{8h}{\pi^2} = 0.8106 \ h$$

$$B_1 = \frac{8h}{\pi^2} = 0.8106 h$$

$$B_3 = -\frac{8h}{9\pi^2} = -0.0901 h$$

$$B_5 = \frac{8h}{25\pi^2} = 0.0324 \ h$$

$$B_7 = -\frac{8h}{49\pi^2} = -0.0165 \ h$$

$$B_9 = \frac{8h}{81\pi^2} = 0.0100 \ h$$

$$y(x,t) = \sum_{k=1}^{\infty} B_k \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_k t)$$
$$\omega_k = \frac{k\pi v}{L}$$

Period of lowest frequency mode:

$$T = \frac{1}{\nu_1} = \frac{2L}{\nu}$$

• After time t = T/2 = L/v,

-1 because $B_k \neq 0$ only when k is odd.

$$y(x,t) = \sum_{k=1}^{\infty} B_k \sin\left(\frac{n\pi x}{L}\right) \cos(\pi k)$$
$$= -u(x)$$

The string maintains its triangular shape!

• The wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

- We worked out solutions that satisfied specific boundary conditions.
- Previously (first week of class) we showed that a general solution is any function that is of the form

$$y(x,t) = f(x \pm vt)$$

Are these two pictures compatible?

Solutions for normal modes:

$$y_n(x,t) = \sin\left(\frac{n\pi x}{L}\right)\cos(\omega_n t)$$
$$\omega_n = \frac{\pi nv}{L}$$

Trigonometric identity:

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

This gives,

$$y_n(x,t) = \frac{1}{2} \left[\sin\left(\frac{n\pi x}{L} + \omega_n t\right) + \sin\left(\frac{n\pi x}{L} - \omega_n t\right) \right]$$

$$y_n(x,t) = \frac{1}{2} \left[\sin\left(\frac{n\pi x}{L} + \omega_n t\right) + \sin\left(\frac{n\pi x}{L} - \omega_n t\right) \right]$$

Write this as

$$y_n(x,t) = \frac{1}{2} \left[\sin(k(x+vt)) + \sin(k(x-vt)) \right]$$
$$k = \frac{n\pi}{L}$$

- This is the equation for two sine-waves moving in opposite directions.
- The text refers to these as "progressive waves".
- The "standing waves" that satisfy the boundary conditions are the superposition of "progressive waves" that move in opposite directions.

- Waves can propagate in either direction.
- Easiest to visualize in terms of a pulse, or wave packet:

• If this disturbance is far from the ends, the effect is the same as letting $L \to \infty$

$$B_k = \frac{2}{L} \int_0^L \sin\left(\frac{k\pi x}{L}\right) u(x) dx$$

 In the limit where the disturbance is very far from either boundary, the Fourier sine transform is:

$$B(k) = \int_{-\infty}^{\infty} u(x) \sin(kx) \, dx$$

• Similarly, we can define the Fourier cosine transform:

$$A(k) = \int_{-\infty}^{\infty} u(x) \cos(kx) \, dx$$

• The original function is represented by:

$$u(x) = \frac{1}{\pi} \int_0^\infty A(k) \cos(kx) dk + \frac{1}{\pi} \int_0^\infty B(k) \sin(kx) dk$$

- Previously, we interpreted the coefficients B_n as the amplitude of the normal mode with frequency ω_n
 - wavelength $\lambda_n = 2L/n$
 - wavenumber $k_n = 2\pi/\lambda_n = \pi n/L$
- Now, we interpret A(k) and B(k) as the amplitude for harmonic waves with wavenumbers between k and k+dk.
- It can be important to decompose a pulse into its frequency components because in real materials, the nature of wave propagation can depend on the frequency.

Consider a pulse that has a Gaussian shape:

$$g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- Special case:
 - Peak position is at x = 0
 - Width of the peak is $\sigma = 1$
- Other Gaussian functions can be transformed into this special case by linear change of variables.
- What is the continuous Fourier transform?

$$B(k) = \int_{-\infty}^{\infty} g(x) \sin(kx) dx$$

• The Gaussian function g(x) is an even function:

$$g(x) = g(-x)$$

• The function sin(kx) is an odd function:

$$\sin(-kx) = -\sin(kx)$$

This integral must vanish...

$$B(k) = 0$$

$$A(k) = \int_{-\infty}^{\infty} g(x) \cos(kx) dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} \cos(kx) dx$$

From your table of integrals:

$$\int_{-\infty}^{\infty} e^{-ax^2} \cos bx \, dx = \sqrt{\frac{\pi}{a}} e^{-b^2/4a}$$

• In this case, a = 1/2 and b = k

$$A(k) = \frac{1}{\sqrt{2\pi}} \times \sqrt{2\pi} e^{-k^2/2} = e^{-k^2/2}$$

• This is a Gaussian distribution of wavenumbers $k = \omega/v$.