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The Eigenvalue Problem

• If � is an � × � matrix and � is a vector, find the 

numbers � that satisfy

�	� = λ	�
• Re-write the equation this way:

� − λ	
 	� = 0
• This is true only if

det � − λ	
 = 0
• For a 2 × 2 matrix, this is:

� − � �
� � − � = � − � � − � − �� = 0

• This is a second order polynomial in �.  Use the 

quadratic formula to find the roots.



The Eigenvalue Problem

• The eigenvectors are vectors �� such that

� − ��
 �� = 0
• There are � eigenvalues and � eigenvectors

• If �� is an eigenvector, then ��� is also an eigenvector.

• Sometimes it is convenient to choose the eigenvectors so 

that they have unit length:

��� ∙ ��� = 1
• Eigenvectors are orthogonal:

�� ∙ �� = 0 when  � ≠ �
• An arbitrary vector � can be written as a linear 

combination of the eigenvectors:

� = ����� + � �� +⋯



A Circuit with One Loop
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A Circuit with Two Loops
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Example
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Example
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�* + ./  (�� − � ) = 0
� � 
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Normal Modes of Oscillation

• What are the frequencies of the normal modes of 

oscillation?

– Let  34 * = 34cos.*
– Then  

89:4
8;9 = −. 34 *

• Substitute into the pair of differential equations:

−. + ./  �� − ./  � = 0
−. + 2 ./  � − ./  �� = 0

• Write it as a matrix:

./  −. − ./  
− ./  2 ./  − . 

��� = 0



Eigenvalue Problem

./  − . − ./  
− ./  2 ./  −. 

��� = 0
• For simplicity, let � = . and calculate the determinant:

./  − � − ./  
− ./  2 ./  − � = � − ./  � − 2 ./  − ./ <

=	� − 3� ./  + ./ < = 0
• Roots of the polynomial:

� = 3
2 ./  ± 1

2 9 ./ < − 4 ./ <

. = ./  3 ± 5
2



Eigenvalue Problem

• The eigenvectors are obtained by substituting in each 

eigenvalue.

– When . = ./  BC D
 

./  
2

−1 − 5 −2
−2 1 − 5

��� = 0

�� = 1 − 5
2 � 

– First normal mode of oscillation:

E4� = � 1 − 5
2 cos .�* + F



Eigenvalue Problem

• The eigenvectors are obtained by substituting in each 

eigenvalue.

– When . = ./  BG D
 

./  
2

−1 + 5 −2
−2 1 + 5

��� = 0

�� = 1 + 5
2 � 

– Second normal mode of oscillation:

E4 = H 1 + 5
2 cos . * + I



Eigenvalue Problem

• The original “coordinates” are the sum of the normal 

modes of oscillation:

�� * = J 1 − 5 cos .�* + � + K(1 + 5) cos . * + L
� * = 2J cos .�* + � + 2K cos . * + L

• The constants of integration can be chosen to satisfy 

the initial conditions

– For example, suppose that �� 0 = �M and � 0 = 0
– Then J = −K, 2J = �M � J = �O

 , K = − �O
 



Two Loop Circuit
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Forced Coupled Circuit

• If the two loops were driven with a sinusoidal voltage 
source:

• Resonance would occur at the frequency of each 
normal mode:
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. = ./  3 ± 5
2



One Mass

Consider one mass with two springs:

V

0 +W

V

0 +WW
X = −2SW



Two Masses

Consider two masses with three springs:

X� = −SW� − SW� + SW = S(W − 2W�)X = SW� − SW − SW = S(W� − 2W )

V V



Three Masses

Consider three masses with four springs:

X� = −SW� − SW� + SW = S(W − 2W�)X = −S W − W� − S(W − WB) = S(W� − 2W + WB)XB = −SWB − SWB + SW = S(W − 2WB)

V V V



Four Masses

X� = −SW� − SW� + SW = S(W − 2W�)X = −S W − W� − S(W − WB) = S(W� − 2W + WB)XB = −S WB − W − S(WB − W<) = S(W − 2WB + W<)X< = −SW< − SW< + SWB = S(WB − 2W<)
• This pattern repeats for more and more masses.

• Except at the ends,

X� = −S W� − W�G� − S(W� − W�C�) = S(W�G� − 2W� + W�C�)
• Equations of motion:

V	WY� − S W�G� − 2W� + W�C� = 0

V V V V



Many Coupled Oscillators

V	WY� − S W�G� − 2W� + W�C� = 0
WY� + 2 ./  W� − ./  W�G� + W�C� = 0

• Apply the same techniques we used before:

– Suppose W� * = J� cos.*
– Then WY� * = −. J� cos.*−. + 2 ./  J� − ./  J�G� + J�C� = 0

J�G� + J�C�
J� = −. + 2 ./  

./  
• Guess at a solution:

JZ = , sin �∆^
• Will this work?



Many Coupled Oscillators

JZG� + JZC�
JZ = −. + 2 ./  

./  
• Proposed solution:

JZ = , sin �∆^
• Boundary conditions: J/ = J_C� = 0
• This implies that ` + 1 ∆^ = SR

JZ = , sin �SR
` + 1

JZG� + JZC� = , sin � − 1 SR
` + 1 + , sin � + 1 SR

` + 1
= 2, sin �SR

` + 1 cos SR
` + 1

JZG� + JZC�
JZ = 2 cos SR

` + 1 = −. + 2 ./  
./  



Many Coupled Oscillators

JZG� + JZC�
JZ = 2cos SR

` + 1 = −. + 2 ./  
./  

• Solve for .:

. = 2 ./  1 − cos SR
` + 1

= 4 ./  sin SR
2 ` + 1

.a = 2./ sin SR
2 ` + 1

• There are ` possible frequencies of oscillation.



Many Coupled Oscillators

• The motion of the masses depends on both the 

position of the mass (�) and the mode number (S):

JZ,a = ,Z sin �SR
` + 1

.a = 2./ sin SR
2 ` + 1

• When all the particles oscillate in the Sth normal 

mode, the �th particle’s position is:

WZ,a * = JZ,a cos .a* + ba



Many Coupled Oscillators

What do these modes look like?

• Lowest order mode has S = 1… 

WZ,� * = ,� sin �R
` + 1 cos.�*



Many Coupled Oscillators

• Positions of masses in the second mode:

• Positions for 4 particles in modes S = 1,2,3,4:


