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Coupled Oscillators

• Simple pendulum: �� + �� sin � = 0
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Two Independent Oscillators

• Two simple pendula:
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Two Coupled Oscillators

• Two simple pendula

connected to a spring:
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• There are many types of 

motion possible now.

• The solutions are not 

independent

• We can consider two 

“modes” of oscillation.
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Two Coupled Oscillators

• The spring is at its relaxed 

length and exerts no force 

on A or B.

• Each pendulum oscillates at 

its natural frequency
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One differential equation 

describes both pendula.
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Two Coupled Oscillators

• In this case,

�� = −��
• The spring is stretched or 

compressed and produces

!� = −" �� − �� = −2"��
• Differential equation for A:
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• Differential equation for B:
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Two Coupled Oscillators

��� + ��
� + 2 �%

� �� = 0

• This is just the differential 

equation for simple harmonic 

motion:

��� + �′
��� = 0

• Oscillation frequency is
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• The spring increases the 

restoring force and increases 

the frequency.
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Two Coupled Oscillators

• We have identified two 

modes of the system:

– One oscillates with frequency
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– The other  with frequency
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• These are the only two 

normal modes of the system.

• But we can superimpose the 

solutions to describe 

arbitrary motion.
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Two Coupled Oscillators

• The spring is stretched by 

the amount �� − ��

• Restoring force on 

pendulum A:

!� = −"(�� − ��)

• Restoring force on 

pendulum B:

!� = "(�� − ��)
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Two Coupled Oscillators
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• Each equation contains a term in the other coordinate

• The motion of A affects B and the motion of B affects A

• They must be solved simultaneously



Two Coupled Oscillators
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• Add equations for A and B together:
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Two Coupled Oscillators

• We have successfully “decoupled” the differential 

equations:
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• We just need to re-label the coordinates:
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Two Coupled Oscillators

• Decoupled equations:

)�* + ��
�)* = 0

)�� + �′ �)� = 0

• Solutions are

)* � = + cos ��� + ,
)� � = - cos �′� + .

• The variables )* and )� are called “normal 

coordinates”.



Initial Conditions

• Suppose we had the initial conditions:
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• Try to satisfy these when , = . = 0:
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• At time � = 0,
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• Now we know that + = - = +�.



Initial Conditions

• Velocity:
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• Initial conditions are satisfied at � = 0.



Initial Conditions

• Complete solution:
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