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Physics 42200
Waves & Oscillations

Lecture 10 — French, Chapter 4
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Forced Oscillators and Resonance

mX + bx + kx = F, cos wt
e Natural oscillation frequency:

k k  b?

Wy = |— w = —
0 m free Vm 2m2

e Amplitude of steady-state oscillations:
Fy/m

J(@)? = 02)? + wpy
e Phase difference:

= -1 wy
6 = tan <(w0)2_w2>
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Resonance Phenomena

Change of variables:

b __ Wy Strong damping force = large y
Y= Q= "y Strong damping force 2 small Q
Natural oscillation frequency:
k k y? 1
Wo = | Wfree = == = Wo 1_2_Q2

Amplitude of steady-state oscillations:

A(w) = F, wo/w

-2y

5 = tan~! (_%1—£Q£>
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Phase difference:



Resonance Phenomena

e Steady state amplitude:
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Peak is near w/wq = 1. The peak occurs at exactly w/wsree = 1.



Average Power

 The rate at which the oscillator absorbs energy is:
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Examples

e Resonant RLC circuit:

O

Ep cos wt

L di + i(t)R + . jt'(t)dt
—+ 1 — | i
dt CJ,

The transformer does not play a role in the analysis of the circuit. It is just
a convenient way to isolate the driving voltage source from the part of the
circuit that oscillates.



Resonant Circuit

di 1t
L—+i(t)R + Ej i(t)dt = £, cos wt
0

dt
e Differentiate once:
d?i di 1 _
LF_I_ Rd_+El(t) = —Eyw sin wt
 Redefine what we man by “t = 0”:
d?i di 1
LF_I_ Rd—+El(t) = Eow COS wt
e Change of variables:
d?i di , Eow
7 + o + (wg)“i(t) = Tcos wt



Resonant Circuit

d2i+ dl+( V2ice) = Eow .
T2tV (@0)*i(t) = ——cosw

 Amplitude of steady state current oscillations:

Alw) = EywlC wo/za)
[(@ RECA .
W 0?

* Voltage across the capacitor:

1/2

V(t) =i(t)X, = %

 Amplitude of voltage oscillations measured across C:

V(w) = & o/ ®

(-2) +2
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Actual Data

e |f we know that L = 235 uH, can we estimate R and C?

3000

Peak voltage is at
fpear = 290 kHz

Wpeak = Zn(fpeak)

2500

Voltage
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Energy

 Energy stored on a capacitoris £ = %CV2

 The graph of the stored energy is proportional to the
square of the voltage graph.
e If we defined 2Aw as the FWHM on the graph of

power vs frequency, then it will correspond to 1/\/?
of the peak voltage.



Voltage

2500=

Resonant Circuit

2Af =110 kHz

L =235 uH

y = 2n(Af) = 6.91 x 10° s~1

2000(—

: Buty = R/L so we can find R:

1000

500(-

f=w/2r [Mhz] =162 Q

. . . 1 2 1
Peak position is wyeqr = \/E — yj >C= 2 y2
L((wpeak) +7)

C = 1.20 nF




Lifetime of Oscillations

Amplitude of a damped harmonic oscillator:
x(t) = A e V2 cos wt

Maximum potential energy:

1
U=Ekx2 oce_yt

After timet = 1/y, the energy is reduced by the
factor 1/e.

We call T = 1/y the “lifetime” of the oscillator.



Other Resonant Systems
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Other Resonant Systems




Other Resonant Systems
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Wire Bond Resonance

 Wire bonds in a magnetic field:

—

B F

I

Lorentz forceis F = I [ d¢ X B
The tiny wire is like a spring.

A periodic current produces
the driving force.

Amplitude [A.U.]
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Wire Bond Resonance




Resonance in Nuclear Physics

A proton accelerated through a potential
difference V gains kinetic energy T = eV’

Fi1G. 1. Block diagram of battery stacks. Adjustable 500-
volt boxes were set to any voltage below 500 volts by means
of a potentiometer. The polarity of any of the boxes except
the adjustable 500-volt box could be selected at will for

p comparison purposes.

* 5000 volt boxes used Eveready No. 493, 300 volt
batteries. All other batteries were of the Burgess X X485, 673

1 f | heavier duty batteri d
Phys. Rev. 75, 246 (1949). continuous drain to. provide continuous range of ad-
Justments.

** The actual voltage is 504.08 Int. volts and is de-
termined by the resistor divider ratio and the 1.50000 volt
setting on the potentiometer.



Resonance in Nuclear Physics

* In guantum mechanics, energy and frequency
are proportional:
E=hw
e A given energy corresponds to a driving force
with frequency w.

 When a nucleus resonates at this frequency,
the proton energy is easily absorbed.



Nuclear Resonance

Fi1G. 7. vy-ray yield curves
for both series of measure-
ments of F(pvy) resonance re-
action. Yield values are all on
same relative scale.

“Lifetime” is
defined in terms of
the width of the
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resonance.

PROTON BEAM ENERY (MEV ABSOLUTE)



Resonance
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e Resonances are the main way we observe fundamental

particles.



