

Physics 29000 – Quarknet/Service Learning

Lecture 1: Introduction

Purdue University
Department of Physics
January 18, 2013

What is QuarkNet?

http://quarknet.fnal.gov/index.html

- Principal Investigators:
 - Marjorie Bardeen (Fermilab)
 - Anna Goussiou (Washington)
 - Dan Karmgard, Mitch Wayne (Notre Dame)
- Staff Teachers:
 - Tom Jordan (Florida)
 - Ken Cecire (Notre Dame)
 - Bob Peterson (Fermilab)
- And many more...

QuarkNet: The science connection you've been waiting for!

The Opportunity: "Your program rejuvenates my soul. It connects me with a cadre of intelligent and excited educators. It reinvigorates my teaching and provides me avenues to extend and enliven the projects that I can offer my students. Without the Quarknet program I am sure that I would have left teaching years ago."

The Players: High school students, teachers and physicsts working together on physics research projects exploring the hidden nature of matter, energy, space and time.

The Questions: What are the origins of mass? Can the basic forces of nature be unified?

How did the universe begin? How will it evolve?

LHC & Fermilab Links	For Teachers	For Students
CERN Homepage	QuarkNet Classroom Activities	Cosmic Ray Studies
ATLAS Experiment	Cosmic Ray e-Lab	CMS Studies
CMS Experiment	CMS Ray e-Lab	Run II Website
LHCb Experiment	LHC Workshop Resources	View student Webcasts
	CMS Masterclass Library	Analyze the data
Fermilab Homepage	Online Resources	Measuring Single Photons
CDF Experiment	Centers	Discovering New Particles
DZERO Experiment		Applying Ohm's Law
	Contact us!	The Particle Adventure
		The Top Quark
	Join us!	Online References
Project Overview	Kudos for QuarkNet	At Work

This project is supported in part by the National Science Foundation and the Office of High Energy Physics, Office of Science, U.S. Department of Energy. Opinions expressed are those of the authors and not necssarily those of the Foundation or Department.

What is QuarkNet?

- One area of leading edge research into the fundamental laws of nature is *Particle Physics...*
- And in particular, High Energy Physics (HEP)
- As researchers, we get to...
 - Ask big questions like
 - "What is the origin of mass?"
 - "Were is all the anti-matter in the universe?"
 - Develop new technologies for conducting leading edge experiments
 - Carry out some of the most complex experiments ever constructed
 - Collaborate with hundreds or thousands of other researchers from around the world
- This creates some unique opportunities...

What is QuarkNet?

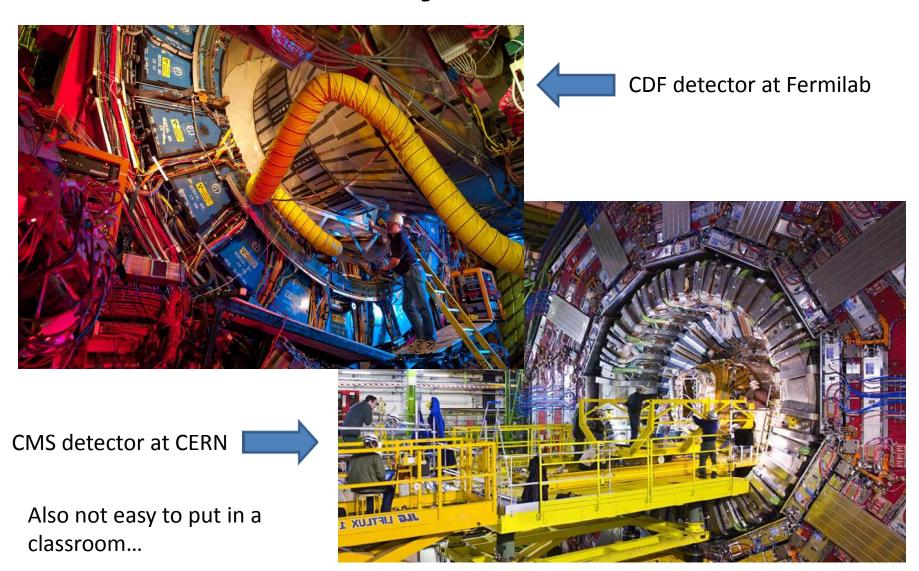
- High school outreach:
 - Valued and supported by the National Science Foundation (NSF)
 - Community benefits from publically funded research
 - Attract students to pursue careers in science and technology
 "QuarkNet: Helping Develop America's Technical Workforce"
 - Leading edge research is not abstract it is happening now in your community
 - Students and teachers can be a part of it!
 - They are not are not on your own:
 - 18 HEP experiments
 - 475 high schools in 24 states
 - 60,000 students per year
 - Purdue can help get local teachers and students involved.

QuarkNet

QuarkNet is a national program sponsored by the National Science Foundation and the U.S. Department of Energy, designed to involve high school physics and chemistry teachers in cutting-edge high energy particle physics research. Teachers work together to develop curriculum which can be incorporated into their teaching; thus, exposing students to the physics and technology of particle physics.

Particle Physics Experiments

Accelerator based experiments:



Fermilab (Batavia, Illinois)

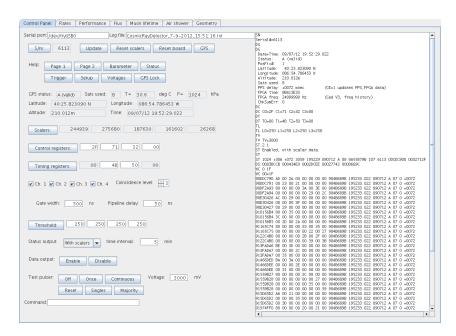
CERN (near Geneva, Switzerland)

Not very easy to put these in a classroom...

Particle Physics Detectors

Particle Physics In the Classroom

• Cosmic rays:


- Fundamental subatomic particles (mostly muons)
- Produced when high energy protons from distant galaxies hit atoms in the upper atmosphere.
- The study fundamental particle physics began with the discovery of cosmic rays and is ongoing.
- With the right equipment (which we can provide) you can study cosmic rays in a classroom.
- You can do the same experiments that yielded Nobel prizes

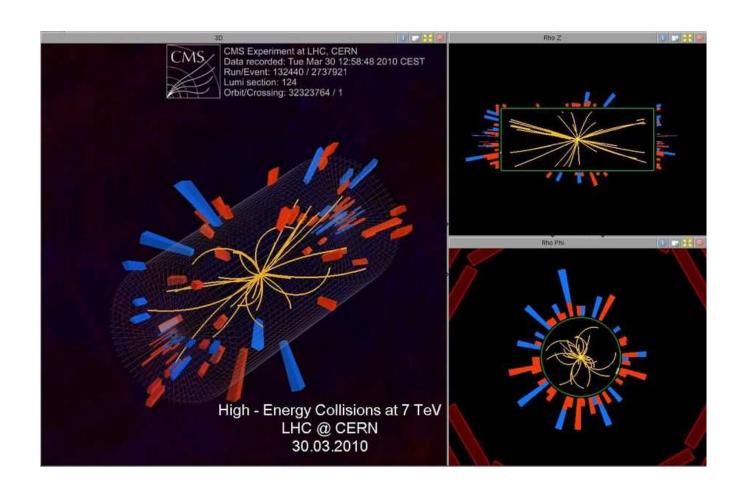
QuarkNet Cosmic Ray Detector

Same technologies used in modern particle physics experiments.

Cosmic Ray Detector Interface

We hope to base many of the activities with the cosmic ray detector on this software interface.

Interacting with the cosmic ray detector hardware used to be a challenge...


... but not any more!

MasterClass Workshops

- We can also analyze data collected with the CMS detector at CERN:
 - High school students visit Purdue on a Saturday
 - Analyze data from high energy proton collisions collected with the CMS detector
 - Learn to identify muons, electrons, jets, junk, ...
 - Measure stuff and interpret their measurements
 - Video conference with other centers around the world to compare results.

MasterClass Workshops

Impact on Students

- Do students really need to know about cosmic rays and particle physics?
 - Most probably don't...
- Studying cosmic rays is a model for almost any area of leading edge research:
 - We can't directly see cosmic rays, the Higgs boson, cell walls, gravitational lenses, DNA replication, black holes, tectonic plates, etc., etc., ...
 - We learn about these by means of various types of technology
 - We develop a mental picture (or model) of these processes
 - We compare our model with the results of experiments
- If you can learn to do this, then you are a scientist.