Tuesday’s Clicker Question

If \(Q_2 = 1 \, \mu C \) and \(Q_1 = -2 \, \mu C \) which graph most accurately shows \(V(r) \)?

(a) \[\text{Graph (a)}\]
(b) \[\text{Graph (b)}\]
(c) \[\text{Graph (c)}\]
(d) \[\text{Graph (d)}\]
What we know already:

- Net charge is $-1 \mu C$
- Charge on inner surface of outer spherical shell is $+2 \mu C$

Tuesday’s Clicker Question

- Electric field is always pointing towards the origin.
 - $V(r)$ will always be negative.
 - A positive charge has less potential energy closer to the sphere.
- Electric potential inside the conductors is constant.
 - $V(r)$ will be flat in the shell and in the sphere.

$Q_2 = 1 \mu C$ and $Q_1 = -2 \mu C$
Storing Energy

Tuesday’s example with the Van de Graaff...

Initial charge: Q

Initial electric potential at the surface:

$$V(R) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R}$$

Work needed to add an additional charge, ΔQ:

$$\Delta U = V(R)\Delta Q = \frac{1}{4\pi\varepsilon_0} \frac{Q\Delta Q}{R}$$

Total work needed to add charge Q_{total}:

$$U = \frac{1}{4\pi\varepsilon_0} \frac{1}{R} \int_0^{Q_{total}} Q \, dQ = \frac{1}{4\pi\varepsilon_0} \frac{1}{R} \times \frac{1}{2} (Q_{total})^2$$
Storing Energy

Total work needed to charge sphere:

\[U = \frac{1}{4\pi\varepsilon_0} \frac{1}{R} \times \frac{1}{2} Q^2 \]

Final voltage of sphere:

\[V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} \]

\[Q = 4\pi\varepsilon_0 RV \]

Stored energy:

\[E = \frac{1}{2} (4\pi\varepsilon_0 R) V^2 \]

In principle, we can use this energy to do work...
Capacitors

- A *capacitor* is a device that stores electrostatic potential energy.
- These are (almost) always two conductors in close proximity separated by an insulator:
 - Air or vacuum
 - Something that prevents sparks
 - Something that also stores electrostatic potential energy
- Examples:
 - Two parallel wires
 - Two parallel plates
 - Two coaxial cylinders
How Much Energy?

- Consider two conductors with electric potentials V_1 and V_2...
- We can always pick $V_1 = 0$ and then V_2 is just the potential difference between them.
How Much Energy?

• Take a small charge ΔQ from the blue conductor and move it to the red conductor...
• Work done is $\Delta U = V \Delta Q$
• How much will this change V?
 – It turns out that $\Delta V \propto \Delta Q$
Capacitance

\[\Delta Q \propto \Delta V \]

- The constant of proportionality is the capacitance, \(C \):
 \[\Delta Q = C \Delta V \]
- If you transfer a total charge \(Q \), then the potential difference will be:
 \[V = \frac{Q}{C} \]
- The capacitance is defined as:
 \[C = \frac{Q}{V} \]

Units for Capacitance:

\[\text{Farad} = \frac{\text{Coulomb}}{\text{Volt}} \]

\[\epsilon_0 = 8.85 \text{ pF/m} \]
Stored Energy

• How much work, U, does it take to charge a capacitor to a final voltage, V?

$$\Delta U = V \Delta Q = C V \Delta V$$

$$U = C \int_{0}^{V} V \, dV = \frac{1}{2} C V^2$$

Equally valid:

$$U = \frac{1}{C} \int_{0}^{Q} Q \, dQ = \frac{1}{2C} Q^2$$

• This is the energy stored in the capacitor.
• You don’t have to “move” the same charge from one conductor to the other, just the same amount of charge.
Question

If the charge, \(Q \), is doubled, will the capacitance...

(a) Increase?
(b) Decrease?
(c) Remain the same?
Examples

• General procedure for calculating capacitance:

 1. Put charge $\pm Q$ on the two conductors
 2. Calculate \vec{E} between the conductors
 3. Calculate the electric potential difference

\[V = -\int \vec{E} \cdot d\vec{l} \]

 4. Use $C = Q/V$
First Example

• Parallel plate capacitor:
First Example

• Parallel plate capacitor:

\[C = \frac{\varepsilon_0 A}{d} \]

This ignores any “edge effects”...
It is a good approximation when \(d \) is small compared with the length and width of a plate.
Coaxial Cylinder

\[C = \frac{2\pi \epsilon_0 L}{\log(R_2/R_1)} \]
Examples

- Another way to calculate capacitance:
 1. Put charge $\pm Q$ on the two conductors
 2. Calculate electric potential of each conductor
 - Consider each conductor in isolation
 - Use the principle of superposition
 3. Calculate the potential difference, V
 4. Use $C = Q/V$
Second Example

• Two long, parallel wires:

We will suppose that $L \gg d \gg a$.

\[\begin{align*}
\text{+Q} \\
\vec{E} \\
-\text{Q}
\end{align*} \]
Second Example

- Two long, parallel wires:

\[C = \frac{\pi \varepsilon_0 L}{\log(d/a)} \]

(assuming \(L \gg d \gg a \).)
Numerical Example

• What is the capacitance of an extension cord, 10 meters long with wires that are 1 mm in diameter, separated by 2 mm?
 o $L = 10 \text{ m}$
 o $d = 2 \text{ mm}$
 o $a = 0.5 \text{ mm}$

$$C \approx \frac{\pi \varepsilon_0 L}{\log \left(\frac{d}{a} \right)} = \frac{\pi (8.85 \text{ pF} \cdot \text{m}^{-1})(10 \text{ m})}{\log \left(\frac{2 \text{ mm}}{0.5 \text{ mm}} \right)} = 200 \text{ pF}$$
Numerical Example

• How much energy is stored if there is a potential difference of 100 volts?

\[
U = \frac{1}{2} C V^2
\]

\[
= \frac{1}{2} (200 \text{ pF})(100 \text{ V})^2
\]

\[
= \frac{1}{2} (200 \text{ pC} \cdot \text{V}^{-1})(100 \text{ V})(100 \text{ J} \cdot \text{C}^{-1})
\]

\[
= 1 \mu\text{J}
\]
Clicker Question

• To double the capacitance of a parallel plate capacitor, you should:

(a) Double the area of the plates
(b) Half the distance between the plates
(c) Both (a) and (b)
(d) Either (a) or (b)