

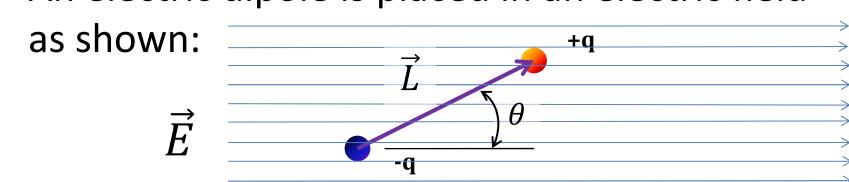
Physics 24100 Electricity & Optics

Lecture 3 – Chapter 22 sec. 1-2

Fall 2012 Semester Matthew Jones

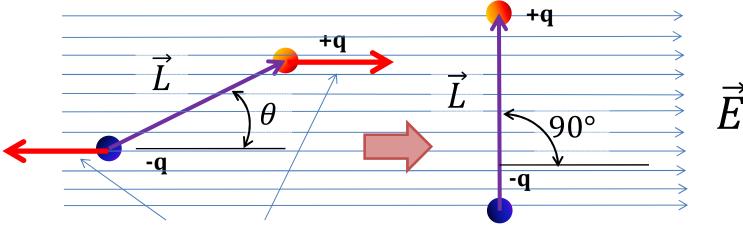
Thursday's Question for Credit

An electric dipole is placed in an electric field



- If someone rotates the dipole from this orientation to one where $\theta = 90^{\circ}$ then...
 - (a) Work is done on the electric field
 - (b) Work is done by the electric field
 - (c) The net force is zero, so no work is done
 - (d) The potential energy of the dipole decreases

Thursday's Question



Force from the electric field.

You need to push against the electric forces to re-orient the dipole. The torque you apply winds it up, storing energy.

- Net force is zero, but torque is non-zero. $\Delta U = -\int_{ heta_0}^{ heta} au \ d heta$
- Potential energy of the dipole increases! It wants to unwind and give back the energy you put into it.
- You don't allow the electric field to move the charges work is not done by the field.
- Instead, work is done on the electric field the configuration of charges gains potential energy of some form.

A Quick Poll

 In the examples, which notation do you prefer to use for the unit vectors along the x-, y- and z-axes?

(a)
$$\hat{i}, \hat{j}, \hat{k}$$

(b)
$$\hat{x}$$
, \hat{y} , \hat{z}

Continuous Charge Distributions

• Electric field due to a point charge Q_1 located at position vector \vec{x}_1 :

$$\vec{E}(\vec{x}) = \frac{1}{4\pi\epsilon_0} \bar{\frac{Q_1}{|\vec{x} - \vec{x}_1|^3}} (\vec{x} - \vec{x}_1)$$

Principle of superposition:

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$$

Remember,

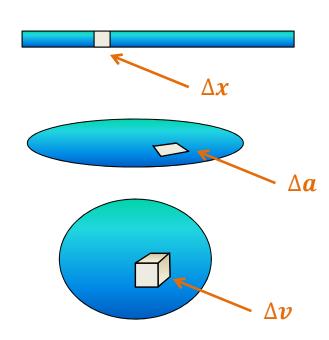
 $\hat{r} = \frac{\vec{r}}{|\vec{r}|}$

In general,

$$\vec{E}(\vec{\mathbf{x}}) = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{Q_i}{|\vec{\mathbf{x}} - \vec{\mathbf{x}}_i|^3} (\vec{\mathbf{x}} - \vec{\mathbf{x}}_i)$$

Continuous Charge Distributions

- Instead of discrete charges, Q_i , consider the charge to be continuously distributed...
 - Along a line: $\Delta Q = \lambda \Delta x$ Units for λ : $C \cdot m^{-1}$
 - On a surface: $\Delta Q = \sigma \Delta a$ Units for σ : $C \cdot m^{-2}$
 - In a volume: $\Delta Q = \rho \Delta v$ Units for ρ : $C \cdot m^{-3}$



• If the size of ΔQ is small enough, it becomes equivalent to a point charge...

Question

Which has the most charge:

A line, $2 m \log$, with $\lambda = 2 C \cdot m^{-1}$

A spherical surface with radius 2 m and $\sigma = 2 C \cdot m^{-2}$

A sphere with radius 2 m and $\rho = 2 C \cdot m^{-3}$

- (a) The line
- (b) The spherical surface
- (c) The sphere
- (d) They all have the same charge

Question

Which has the most charge:

A spherical surface with radius 2 m and $\sigma = 2 C \cdot m^{-2}$

A sphere with radius 2 m and $\rho = 2 C \cdot m^{-3}$

The line has total charge

$$Q_{line} = \lambda L = 4 C$$

The surface has total charge

$$Q_{surf} = \sigma A = 4\pi\sigma r^2 = 4\pi (8 C) \approx 100 C$$

The sphere has total charge

$$Q_{vol} = \rho V = \frac{4}{3}\pi\rho r^3 = \frac{4\pi}{3}(16\ C) \approx 67\ C$$

– The ratio is $\frac{Q_{vol}}{Q_{surf}} = \frac{1}{3} \frac{\rho}{\sigma} r$ so the sphere would only have more charge when $r > 3 \frac{\sigma}{\rho}$.

Continuous Charge Distributions

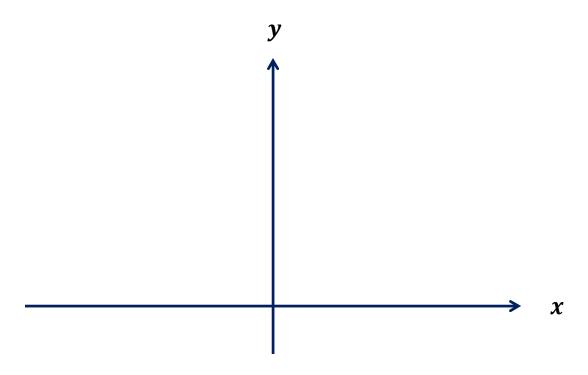
- Terminology used in the text:
 - Source point, \vec{x}_s , where charge $\Delta Q(\vec{x}_s)$ is located.
 - Field point, \vec{x}_p , where we want to evaluate $\Delta \vec{E}(\vec{x}_p)$.
 - Vector from \vec{x}_s to \vec{x}_p : $\vec{r} = \vec{x}_p \vec{x}_s$.

$$\Delta \vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q(\vec{x}_s)}{r^2} \hat{r}$$

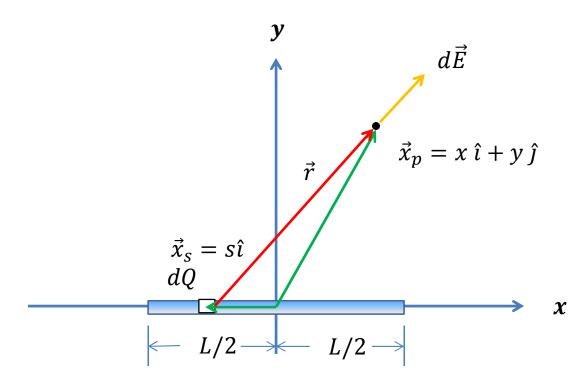
- Principle of superposition: add up the $\Delta \vec{E}$ created by all elements of charge, $\Delta Q(\vec{x}_s)$.
- Limiting case: replace the sum by an integral over the charge distribution.

$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{r}}{r^2} dQ$$

- But we need to re-write this before we can actually evaluate it.
- Some examples should help...



1. Pick a coordinate system, label the axes.



- 2. Label the source and field points.
- 3. Pick variables to express their components.

$$\vec{r} = \vec{x}_p - \vec{x}_s = (x - s)\hat{\imath} + y\hat{\jmath}$$

$$r = \sqrt{(x - s)^2 + y^2}$$

$$d\vec{E}$$

$$dE_x = \frac{1}{4\pi\epsilon_0} \frac{\lambda(x - s)ds}{\left((x - s)^2 + y^2\right)^{3/2}}$$

$$dE_y = \frac{1}{4\pi\epsilon_0} \frac{\lambda y ds}{\left((x - s)^2 + y^2\right)^{3/2}}$$

$$dQ = \lambda ds$$

$$\vec{x}_s = s\hat{\imath}$$

- 4. Express \vec{r} and r in terms of the components.
- 5. Write each component of $d\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r^2} \hat{r} = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r^3} \vec{r}$.
- 6. Now we can evaluate the integrals.

- Evaluating the integrals can be tedious, but that is a technical issue, not directly related to the physics.
- Suggestions:
 - Simple variable substitution
 - Dig up your calculus text
 - Use tables of integrals (eg. Mathematical handbook)
 - Google "table of integrals"
 - Symbolic math programs (eg. Matlab, Mathematica)
 - Use your judgment, but certainly good for checking another method.

$$E_{x} = \frac{\lambda}{4\pi\epsilon_{0}} \int_{-L/2}^{L/2} \frac{(x-s)ds}{\left((x-s)^{2} + y^{2}\right)^{3/2}}$$
 Then $du = -ds$ When $s = L/2$ then $u = x - L/2$

$$E_x = -\frac{\lambda}{4\pi\epsilon_0} \int_{x+L/2}^{x-L/2} \frac{u \, du}{(u^2 + y^2)^{3/2}}$$

$$E_{x} = -\frac{\lambda}{8\pi\epsilon_{0}} \int_{(x+L/2)^{2}+y^{2}}^{(x-L/2)^{2}+y^{2}} \frac{dv}{v^{3/2}}$$

Let
$$u=(x-s)$$

Then $du=-ds$
When $s=L/2$ then $u=x-L/2$
When $s=-L/2$ then $u=x+L/2$

Let
$$v = u^2 + y^2$$

Then $dv = 2u \ du$, $u \ du = \frac{1}{2} dv$
When $u = x + L/2$ then $v = (x + L/2)^2 + y^2$
When $u = x - L/2$ then $v = (x - L/2)^2 + y^2$

Recall that
$$\int x^m dx = \frac{x^{m+1}}{m+1}$$

In this case, $m = -3/2$

$$E_{x} = \frac{\lambda}{4\pi\epsilon_{0}} \left(\frac{1}{\sqrt{(x - L/2)^{2} + y^{2}}} - \frac{1}{\sqrt{(x + L/2)^{2} + y^{2}}} \right)$$

$$E_y = \frac{\lambda y}{4\pi\epsilon_0} \int_{-L/2}^{L/2} \frac{y \, ds}{\left((x-s)^2 + y^2\right)^{3/2}}$$

$$E_y = -\frac{\lambda y}{4\pi\epsilon_0} \int_{x+L/2}^{x-L/2} \frac{du}{(u^2 + y^2)^{3/2}}$$

Let
$$u=(x-s)$$

Then $du=-ds$
When $s=L/2$ then $u=x-L/2$
When $s=-L/2$ then $u=x+L/2$

Use a table of integrals...

$$E_y = -\frac{\lambda y}{4\pi\epsilon_0} \left(\frac{x - L/2}{y^2 \sqrt{(x - L/2)^2 + y^2}} - \frac{x + L/2}{y^2 \sqrt{(x + L/2)^2 + y^2}} \right)$$

Next, check limiting behavior...

- On the x-axis, y = 0 and suppose that x > L/2
- Then, $E_{\chi} = \frac{\lambda}{4\pi\epsilon_0} \left(\frac{1}{x L/2} \frac{1}{x + L/2} \right)$
- When $x \gg L/2$, $\frac{1}{x+L/2} = \frac{1}{x} \mp \frac{L/2}{x^2} + \cdots$
- So, $E_{\chi} \rightarrow \frac{\lambda}{4\pi\epsilon_0} \left(\frac{L/2}{\chi^2} + \frac{L/2}{\chi^2} \right) = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{\chi^2}$
- This is the same as the electric field for a point charge $Q = \lambda L$.
- Sometimes you have to watch out for algebraic signs:

$$\frac{y}{(y^2)^{3/2}} = \frac{1}{y^2}$$
 only when $y > 0$. If $y < 0$ then $\frac{y}{(y^2)^{3/2}} = -\frac{1}{y^2}$.

Clicker Question

What is the limiting form of

$$E_y = -\frac{\lambda y}{4\pi\epsilon_0} \left(\frac{x - L/2}{y^2 \sqrt{(x - L/2)^2 + y^2}} - \frac{x + L/2}{y^2 \sqrt{(x + L/2)^2 + y^2}} \right)$$
 on the *positive y*-axis, when $x = 0$ and $y \gg L/2$?

(a)
$$E_{\nu} = 0$$

(b)
$$E_y = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{y\sqrt{(L/2)^2 + y^2}}$$

(c)
$$E_y = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{y^2}$$

(d)
$$E_y = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{x^2}$$

Clicker Question

What is the limiting form of

$$E_y = -\frac{\lambda y}{4\pi\epsilon_0} \left(\frac{x - L/2}{y^2 \sqrt{(x - L/2)^2 + y^2}} - \frac{x + L/2}{y^2 \sqrt{(x + L/2)^2 + y^2}} \right)$$
 on the *positive y*-axis, when $x = 0$ and $y \gg L/2$?

(a)
$$E_{y} = 0$$

(b)
$$E_y = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{y\sqrt{(L/2)^2 + y^2}}$$

(c)
$$E_y = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{y^2}$$
 $Q = \lambda L, E_y \propto \frac{1}{y^2}$

(d)
$$E_y = \frac{\lambda L}{4\pi\epsilon_0} \frac{1}{x^2}$$

Continuous Charge Distributions

Linear distribution:

$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \lambda(\vec{x}_s) \frac{\hat{r}}{r^2} ds$$

Surface distribution:

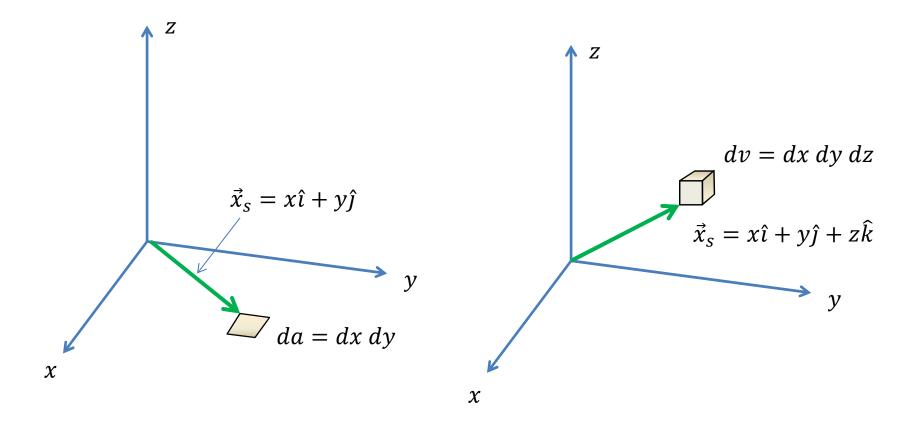
$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \sigma(\vec{x}_s) \frac{\hat{r}}{r^2} da$$

Volume distribution:

$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \rho (\vec{x}_s) \frac{\hat{r}}{r^2} dv$$

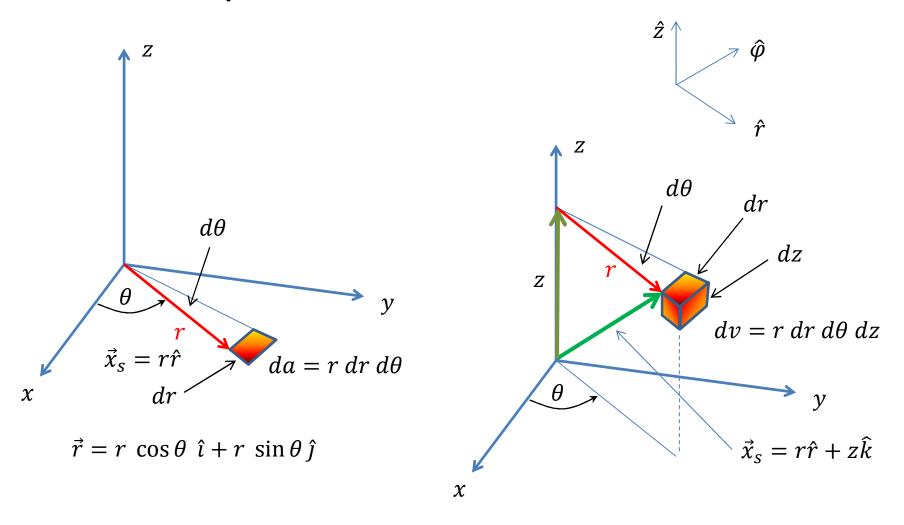
Common Coordinate Systems

• Cartesian coordinates:



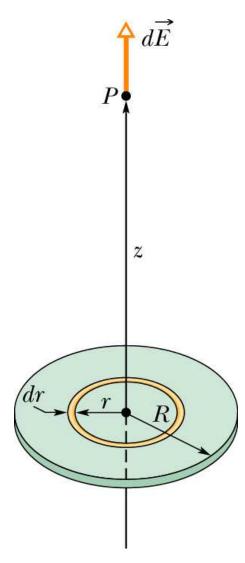
Common Coordinate Systems

Polar or cylindrical coordinates:



Another Example

- Calculate \vec{E} at a point P on the z-axis due to a disk of radius R, with uniform surface charge density, σ , as shown...
- From symmetry, we expect that $E_r = E_{\varphi} = 0$.
- We just need to calculate E_z ...

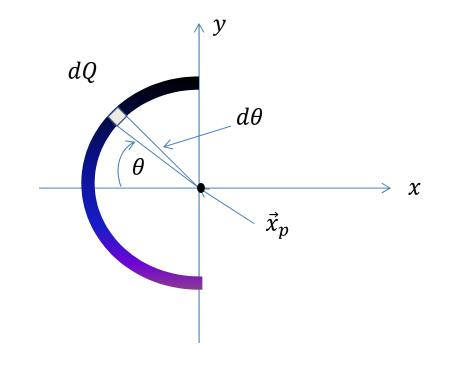


Final Clicker Question

- Charge is uniformly distributed on a semicircular ring with radius *a*.
- The linear charge density is λ .
- We know that

$$\vec{E}(\vec{x}_p) = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r^2} \hat{r}$$

• What is $\frac{dQ}{r^2}$ when \vec{x}_p is at the origin?



(a)
$$\frac{\lambda}{a}d\theta$$
 (b) $\lambda a d\theta$

(c)
$$\frac{\lambda d\theta}{a^2}$$

(d)
$$\pi a \lambda$$