

Physics 24100 Electricity & Optics

Lecture 2

Fall 2012 Semester Matthew Jones

Tuesday's Clicker Question

 Which diagram most accurately shows the forces acting on the charges:

Tuesday's Clicker Question

- Both charges are positive: the force should be repulsive, so it isn't (d).
- Recall that

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \hat{r}$$

- The magnitudes are equal so the correct answer is (a).
- Don't confuse force with the resulting acceleration!
 - Did you assume the big ball would be more massive?

Lecture 2 – Electric Fields

Coulomb's law of electric force:

$$ec{F} = rac{1}{4\pi\epsilon_0} rac{Q_1 Q_2}{r^2} \hat{r}$$

- We had to keep track of which direction this force acted:
 - Force exerted by Q_1 on Q_2 ?
 - Force exerted by Q_2 on Q_1 ?
- What is the mechanism by which the force is exerted?
 - Voodoo?
 - Action at a distance?
- **Electric field:** an electric charge creates "electric field" that surrounds it and extends over macroscopic distances.
- **Electric force:** a charged particle in an electric field experiences a force.

Electric Fields

- Consider the electric force on a *small*, *positive*, "test charge", q_0 ...
 - $-q_0$ should be so small that it has a negligible effect on the local electric field
 - Electric force, $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_0 Q_1}{r^2} \hat{r}$
 - Electric field, $\vec{E}=rac{\vec{F}}{q_0}=rac{1}{4\pi\epsilon_0}rac{Q_1}{r^2}\hat{r}$
- More formally, the electric field due to a point charge, Q, can be defined:

$$\vec{E} = \lim_{q_0 \to 0} \frac{\vec{F}}{q_0} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$$

Scalar and Vector Fields

- A field is a function that can be evaluated at each point in space.
- A scalar field has one value at each point.
 - Examples: temperature, air pressure, density

Scalar and Vector Fields

- A field is a function that can be evaluated at each point in space.
- A vector field has a magnitude and direction at each point.
 - Examples: wind speed

Electric Fields

• If a charge, Q_1 , is located at a position \vec{x}_1 then the force on a test charge at position \vec{x} is:

$$\vec{F}(\vec{x}) = \frac{1}{4\pi\epsilon_0} \frac{q_0 Q_1}{|\vec{r}_{10}|^2} \hat{r}_{10}$$

where $\vec{r}_{10} = \vec{x} - \vec{x}_1$.

• The electric field at position \vec{x} due to the charge Q_1 can be written:

$$\vec{E}(\vec{x}) = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|\vec{x} - \vec{x}_1|^3} (\vec{x} - \vec{x}_1)$$

– It is a vector valued function of \vec{x}

Principle of Superposition

- Net electric force is the vector sum of forces from several point charges.
- The net electric field is also the vector sum:

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$$

By definition,

$$\vec{E} = \frac{\vec{F}_1}{q_0} + \frac{\vec{F}_2}{q_0} + \frac{\vec{F}_3}{q_0} \dots$$

Therefore,

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$$

• Electric field has SI units of Newtons per Coulomb

- You can draw the electric field as a bunch of little vectors.
- A positive charge is indicated by
- Electric field vectors are indicated by arrows.

 Their length indicates the magnitude of the electric field.

There is a better way...

- A positive charge has more lines coming out than going in.
- A negative charge has more lines going in than coming out.
- The direction of the electric field is tangent to the electric field lines at any point.
- The magnitude of the electric field is proportional to the density of electric field lines.

A test charge placed in the electric field will feel a force, $\vec{F} = q_0 \vec{E}$.

Electric Dipole: opposite signs but equal magnitude

Two Positive Charges: with equal magnitude

Opposite charges with unequal magnitudes:

At very large distances, the electric field is the same as one produced by a single point charge with magnitude

$$Q = +2q - q = +q.$$

Density of lines is proportional to the magnitude of the electric field.

Question:

• Two charges are located on the x-axis at positions $\vec{x}_1 = -a\hat{\imath}$ and $\vec{x}_2 = a\hat{\imath}$ as shown:

- The electric field at a point on the y-axis points in the \hat{i} -direction.
- Which statement is true:
- (a) Both charges are positive
- (b) Both charges are negative
- (c) The charges are equal in magnitude but opposite in sign
- (d) The charge on the right is positive

Electric Field from Two Charges

Electric Field from Two Charges

Charge in a Uniform Electric Field

- Force is constant: $\vec{F} = q \ \vec{E}$
- From Newton's second law: $\vec{F} = m\vec{a} = m\frac{d^2\vec{x}}{dt^2}$
- Solve by integration (twice): $\frac{d^2\vec{x}}{dt^2} = \frac{q\vec{E}}{m}$ $\frac{d\vec{x}}{dt} = \int \frac{q\vec{E}}{m} dt = \vec{v}_0 + \frac{q\vec{E}}{m} t$ Constants of integration! $\vec{x}(t) = \int \left(\vec{v}_0 + \frac{q\vec{E}}{m}t\right) dt = \vec{x}_0 + \vec{v}_0 t + \frac{q\vec{E}}{2m}t^2$

Example Application – CIJ Printer

- Droplets are shot out of the nozzle assembly with a velocity of 50 m/s.
- A deflector is 1 mm long and has a constant electric field of $10^5 N \cdot C^{-1}$.
- The mass of a droplet is $10^{-10}~kg$ if the diameter is about $70~\mu m$.
- What charge is needed to deflect a droplet by an angle $\theta = 5.73^{\circ} (0.1 \, rad)$?

Work done by Electric Fields

 After the ink drop has been deflected, its velocity has changed by

$$\Delta v_y = \frac{qEd}{mv_x}$$

and its kinetic energy changed by

$$\Delta T = \frac{1}{2}m(\Delta v_y)^2 = \frac{q^2 E^2 d^2}{2m(\Delta v_x)^2}$$

- How did it get this extra energy?
- The electric field did work on the charge.
 - Energy is conserved...
 - The electric field must have lost energy.
 - Electric fields must store some form of energy.

Dipole Electric Field

What is the electric field at a point on the z-axis?

$$\vec{E}_{+q}(z) = \frac{1}{4\pi\epsilon_0} \frac{q}{(z - d/2)^2} \hat{k}$$

$$\vec{E}_{-q}(z) = \frac{1}{4\pi\epsilon_0} \frac{(-q)}{(z + d/2)^2} \hat{k}$$

$$\vec{E}(z) = \vec{E}_{+q}(z) + \vec{E}_{-q}(z)$$

Dipole Electric Field

What is the electric field at a point on the z-axis?

$$\vec{E}_{+q}(z) = \frac{1}{4\pi\epsilon_0} \frac{q}{(z - d/2)^2} \hat{k} = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{z^2} + \frac{d}{z^3} + \cdots \right) \hat{k}$$

$$\vec{E}_{-q}(z) = \frac{1}{4\pi\epsilon_0} \frac{(-q)}{(z + d/2)^2} \hat{k} = \frac{-q}{4\pi\epsilon_0} \left(\frac{1}{z^2} - \frac{d}{z^3} + \cdots \right) \hat{k}$$

$$\vec{E}(z) = \vec{E}_{+q}(z) + \vec{E}_{-q}(z) \approx \frac{q}{4\pi\epsilon_0} \left(\frac{d}{z^3} + \frac{d}{z^3} \right) \hat{k} = \frac{qd}{2\pi\epsilon_0 z^3} \hat{k}$$

Dipole Moments

 A dipole moment is defined for equal and opposite charges as a vector:

- The vector \vec{L} points from the negative charge to the positive charge.
- The dipole moment is defined: $\vec{p}=q\; \vec{L}$
- Along the axis of the dipole, $E = \frac{1}{4\pi\epsilon_0} \frac{2p}{z^3}$

Example: HCl molecule

 Chlorine likes to have its outer electron shell completely filled.

$$\vec{p} = e \vec{L} = (1.602 \times 10^{-19} C)(0.127 nm)\hat{\imath}$$

= $(2.035 \times 10^{-29} C \cdot m)\hat{\imath}$
 $p = |\vec{p}| = 2.035 \times 10^{-29} C \cdot m$

Forces on a Dipole in an Electric Field

- Net force on the dipole is zero
- The forces are equal and opposite but do not act through the same point. ("couple")
- There is a torque:

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$\tau = \vec{\tau} \cdot \hat{k} = -p E \sin \theta$$
Torque is clockwise!

Potential Energy of a Dipole

- If we turn the dipole in the direction opposite to the torque, (like winding a spring), then we do work on the dipole: its potential energy increases.
- If the dipole turns in the direction of the torque (like unwinding a spring), then it can do work: its potential energy decreases.

$$\Delta U = -\int_{\theta_0}^{\theta} \tau \, d\theta = \int_{\theta_0}^{\theta} p \, E \sin \theta \, d\theta$$
$$= -p \, E \cos \theta \, - U_0$$

• We can *define* U=0 when $\theta=90^\circ$

Constant of integration!

• Then, the potential energy of the dipole is:

$$U = -p E \cos \theta = -\vec{p} \cdot \vec{E}$$

Clicker Question for Credit

An electric dipole is placed in an electric field

- If someone rotates the dipole from this orientation to one where $\theta = 90^{\circ}$ then...
 - (a) Work is done **on** the electric field
 - (b) Work is done by the electric field
 - (c) The net force is zero, so no work is done
 - (d) The potential energy of the dipole decreases