

Physics 24100 Electricity & Optics

Lecture 15 – Chapter 28 sec. 1-3

Fall 2012 Semester Matthew Jones

Rank the current loops in order of increasing force:

$$\frac{dF_{12}}{d\ell_2} = \frac{\mu_0}{4\pi} \frac{2I_1 I_2}{R}$$

$$I_1 \longrightarrow$$

A.
$$1 < 2 < 3$$

B.
$$2 < 3 < 1$$

C.
$$3 < 1 < 2$$

D.
$$3 < 2 < 1$$

E.
$$3 = 2 = 1$$

- Forces on the sides parallel to I_1 are opposite
- The force on the near side is greater when it is longer:
 - Therefore (2) < (1)
- The force is smaller when the side is farther from I_1
 - Therefore (3) < (2)

General Review

So far we have covered:

Electrostatics

- Forces on charge q in an electric field
- Electric fields produced by q

Magnetostatics

- Forces on charge q moving in a magnetic field
- Magnetic field produced by motion of q

Next we consider **Electrodynamics**:

- A changing magnetic field produces an electric field
- A changing electric field produces a magnetic field

Magnetic Flux

 We define magnetic flux in the same way we defined electric flux:

Faraday's Law of Magnetic Induction

- A change in magnetic flux through a conducting loop induces a current in the loop.
- What causes the charges in the conductor to move?
 An electromotive force, E...

$$\mathcal{E} = -\frac{d\phi_m}{dt}$$

- Another way to think about it:
 - Changing magnetic flux induces an electric field
 - This changes the electric potential of the charge carriers

Demonstration

 When a bar magnet is moved in the vicinity of a loop of wire, the magnetic flux through the loop will change.

• A current is induced...

 Faster motion induces a larger current.

 No current when the motion stops.

- The magnetic flux through a loop can change in various ways:
 - The magnetic field could change
 - The source of the magnetic field could move
 - The loop could move in a non-uniform field
 - The orientation of the loop could change
 - Others?
- Examples...

$$\phi_m = \int_{S} \widehat{n} \cdot \overrightarrow{B} \, dA$$
Use the right hand rule!

• Only depends on the component of \overrightarrow{B} perpendicular to the plane of the loop.

$$\phi_m = \int_{S} \widehat{n} \cdot \overrightarrow{B} \, dA$$
Use the right hand rule!

• Only depends on the component of \overrightarrow{B} perpendicular to the plane of the loop.

Magnetic flux increases

Calculating Magnetic Flux

 If the surface is a plane over which the magnetic field is constant, then

$$\phi_m = \int_{S} \hat{n} \cdot \vec{B} dA = BA \cos \theta$$

Units of magnetic flux: Webers... $1 Wb = 1 T \cdot m^2$

- A loop of wire in the Earth's magnetic field has its normal vector pointing north.
- It is rotated so that its normal vector is pointing south.
- How did the magnetic flux through the loop change?
- (a) $\phi_{final} > \phi_{initial}$
- (b) $\phi_{final} < \phi_{initial}$
- (c) $\phi_{final} = \phi_{initial}$

- Initial magnetic flux is positive
- Final magnetic flux is negative
- The flux decreased: $\phi_{final} < \phi_{initial}$

- Changing magnetic flux induces a current in a loop of wire.
- The induced current will create its own magnetic field.
- Lenz's Law: The induced magnetic field will oppose changes to the original magnetic field.
 - If the flux is decreasing, the induced field will increase the flux will add to the applied field
 - If the flux is increasing the induced field will be opposite the applied field

- 1. Pick an orientation for the loop
 - eg, counter-clockwise: \hat{n} points out
- 2. Magnetic field is pointing in
 - Magnetic flux is negative
- 3. $|\vec{B}|$ increases as the loop gets closer
 - Magnetic flux is decreasing
- 4. Induced field will point out (in the direction of \widehat{n})

 $B = \frac{\mu_0 I_C}{2\pi R}$

- 1. Pick an orientation for the loop
 - eg, counter-clockwise: \hat{n} points out
- 2. Magnetic field is pointing in
 - Magnetic flux is negative
- 3. $|\vec{B}|$ decreases as the loop moves away
 - Magnetic flux is increasing
- 4. Induced field will point in (opposite the direction of \widehat{n})

Demonstration: The Electromagnetic Cannon

 An alternating voltage source produces a changing magnetic field in the solenoid.

Attractive force

 When the magnetic field increases, the induced current tries to oppose it

• The magnetic field induced in the loop will oppose changes in \vec{B}

Repulsive force

The magnetic forces fling the ring.

side view

Two current loops are perpendicular to the z axis and are centered on the this axis.

- Current I₁ is clockwise.
- I₂ is the induced current in the bottom loop.

If I_2 is clockwise, which statement is true?

- A. I₁ is decreasing in magnitude
- B. I₁ is constant
- C. I₁ is increasing in magnitude

