Clicker Question

• Rank the current loops in order of increasing force:

\[\frac{dF_{12}}{d\ell_2} = \frac{\mu_0}{4\pi} \frac{2I_1 I_2}{R} \]

A. \(1 < 2 < 3 \)
B. \(2 < 3 < 1 \)
C. \(3 < 1 < 2 \)
D. \(3 < 2 < 1 \)
E. \(3 = 2 = 1 \)
Clicker Question

Forces on the sides parallel to I_1 are opposite.

The force on the near side is greater when it is longer:
 - Therefore $(2) < (1)$

The force is smaller when the side is farther from I_1:
 - Therefore $(3) < (2)$

\[
\frac{dF_{12}}{d\ell_2} = \frac{\mu_0}{4\pi} \frac{2I_1 I_2}{R}
\]

A. $1 < 2 < 3$
B. $2 < 3 < 1$
C. $3 < 1 < 2$
D. $3 < 2 < 1$
E. $3 = 2 = 1$
General Review

So far we have covered:

• **Electrostatics**
 – Forces on charge q in an electric field
 – Electric fields produced by q

• **Magnetostatics**
 – Forces on charge q moving in a magnetic field
 – Magnetic field produced by motion of q

Next we consider **Electrodynamics**:
 – A changing magnetic field produces an electric field
 – A changing electric field produces a magnetic field
Magnetic Flux

• We define magnetic flux in the same way we defined electric flux:

\[\phi_e = \int_S \hat{n} \cdot \vec{E} \, dA \quad \quad \phi_m = \int_S \hat{n} \cdot \vec{B} \, dA \]
Faraday’s Law of Magnetic Induction

• A change in magnetic flux through a conducting loop induces a current in the loop.

• What causes the charges in the conductor to move? An electromotive force, \mathcal{E}...

$$\mathcal{E} = - \frac{d\phi_m}{dt}$$

• Another way to think about it:
 – Changing magnetic flux induces an electric field
 – This changes the electric potential of the charge carriers
Demonstration

- When a bar magnet is moved in the vicinity of a loop of wire, the magnetic flux through the loop will change.
- A current is induced...
- Faster motion induces a larger current.
- No current when the motion stops.
Changes in Magnetic Flux

• The magnetic flux through a loop can change in various ways:
 – The magnetic field could change
 – The source of the magnetic field could move
 – The loop could move in a non-uniform field
 – The orientation of the loop could change
 – Others?

• Examples...
Changes in Magnetic Flux

\[\phi_m = \int_S \hat{n} \cdot \vec{B} \, dA \]

- Only depends on the component of \(\vec{B} \) perpendicular to the plane of the loop.

Use the right hand rule!

\[
\phi_m > 0 \quad \text{Magnetic flux increases} \quad \mathcal{E} < 0 \quad \phi'_m > \phi_m
\]
Changes in Magnetic Flux

\[\phi_m = \oint_S \hat{n} \cdot \vec{B} \, dA \]

- Only depends on the component of \(\vec{B} \) perpendicular to the plane of the loop.

Use the right hand rule!

Magnetic flux increases (because it’s negative!)

\(\phi_m < 0 \)

\(\phi'_m > \phi_m \)

\(\mathcal{E} < 0 \)
Changes in Magnetic Flux

$\phi_m > 0$ \hspace{2cm} $\varepsilon < 0$ \hspace{2cm} $\phi'_m > \phi_m$

Magnetic flux increases
Changes in Magnetic Flux

\[\phi'_m < \phi_m \]

\[\phi_m > 0 \] \hspace{1cm} \text{Magnetic flux decreases} \hspace{1cm} \varepsilon > 0
Changes in Magnetic Flux

$\phi_m > 0$
Magnetic flux decreases
$\phi'_m = 0$
$\varepsilon > 0$
Calculating Magnetic Flux

- If the surface is a plane over which the magnetic field is constant, then

\[
\phi_m = \int_S \hat{n} \cdot \vec{B} \, dA = BA \cos \theta
\]

Units of magnetic flux: Webers... \(1 \, \text{Wb} = 1 \, T \cdot m^2\)
Clicker Question

- A loop of wire in the Earth’s magnetic field has its normal vector pointing north.
- It is rotated so that its normal vector is pointing south.
- How did the magnetic flux through the loop change?
 (a) $\phi_{\text{final}} > \phi_{\text{initial}}$
 (b) $\phi_{\text{final}} < \phi_{\text{initial}}$
 (c) $\phi_{\text{final}} = \phi_{\text{initial}}$
Clicker Question

- Initial magnetic flux is positive
- Final magnetic flux is negative
- The flux decreased: $\phi_{final} < \phi_{initial}$
Lenz’s Law

• Changing magnetic flux induces a current in a loop of wire.

• The induced current will create its own magnetic field.

• Lenz’s Law: *The induced magnetic field will oppose changes to the original magnetic field.*
 - If the flux is decreasing, the induced field will increase the flux will add to the applied field
 - If the flux is increasing the induced field will be opposite the applied field
Lenz’s Law

\[B = \frac{\mu_0 I_c}{2\pi R} \]

1. Pick an orientation for the loop
 • eg, counter-clockwise: \(\hat{n} \) points out
2. Magnetic field is pointing in
 • Magnetic flux is negative
3. \(|\vec{B}| \) increases as the loop gets closer
 • Magnetic flux is decreasing
4. **Induced field will point out**
 (in the direction of \(\hat{n} \))
Lenz’s Law

\[B = \frac{\mu_0 I_c}{2\pi R} \]
Lenz’s Law

1. Pick an orientation for the loop
 • eg, counter-clockwise: \(\hat{n} \) points out

2. Magnetic field is pointing in
 • Magnetic flux is negative

3. \(|\mathbf{B}| \) decreases as the loop moves away
 • Magnetic flux is increasing

4. **Induced field will point in**
 (opposite the direction of \(\hat{n} \))
Demonstration: The Electromagnetic Cannon

- An alternating voltage source produces a changing magnetic field in the solenoid.
- When the magnetic field increases, the induced current tries to oppose it.
- The magnetic field induced in the loop will oppose changes in \vec{B}.
- The magnetic forces fling the ring.
Clicker Question

Two current loops are perpendicular to the z axis and are centered on the this axis.

- Current I_1 is clockwise.
- I_2 is the induced current in the bottom loop.

If I_2 is clockwise, which statement is true?

A. I_1 is decreasing in magnitude
B. I_1 is constant
C. I_1 is increasing in magnitude