Tuesday’s Question

• Three circuits, consisting of two capacitors and a switch, are initially charged as indicated.
• After the switches are closed, in which circuit will the charge on the left increase?

(a) (b) (c) (d) None of them
Tuesday’s Question

- Charge is conserved, \(Q = 9q \)
- Calculate equivalent capacitance, \(C_{equiv} \)
- Then calculate, \(V = \frac{Q}{C_{equiv}} \)
- Finally, calculate, \(Q_{left} = C_{equiv}V \)
Tuesday’s Question

(a) \[Q = 9q \]
\[C_{equiv} = 3C \]
\[V = \frac{Q}{C_{equiv}} = \frac{3q}{C} \]
\[Q_{left} = 2C \times \frac{3q}{C} = 6q \]

(b) \[Q = 9q \]
\[C_{equiv} = 4C \]
\[V = \frac{Q}{C_{equiv}} = \frac{9q}{4C} \]
\[Q_{left} = 3C \times \frac{9q}{4C} = \frac{27}{4}q \]
\[q > 6q \]

(c) \[Q = 9q \]
\[C_{equiv} = 4C \]
\[V = \frac{Q}{C_{equiv}} = \frac{9q}{4C} \]
\[Q_{left} = 2C \times \frac{9q}{4C} = \frac{9}{2}q \]
\[q < 6q \]
Mini-Review

• Lecture 1: \(\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2} \hat{r} \)

• Lecture 2: \(\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r} \) and \(\vec{F} = q\vec{E} \)

• Lecture 3: \(\Delta \vec{E}(\hat{x}_p) = \frac{1}{4\pi\varepsilon_0} \frac{\Delta Q(\hat{x}_s)}{r^2} \hat{r} \rightarrow \vec{E}(\hat{x}_p) = \frac{1}{4\pi\varepsilon_0} \int \frac{\hat{r}}{r^2} dQ \)

• Lecture 4: \(\phi_{net} = \oint_S \hat{n} \cdot \vec{E} \, dA = \frac{Q_{inside}}{\varepsilon_0} \)

• Lecture 5: \(\vec{E} \) near conductors and insulators

• Lecture 6: \(\Delta V = - \int_a^b \vec{E} \cdot d\vec{\ell} \) and \(\vec{E} = -\nabla V \)

\[
V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}
\]
Mini-Review

• Lecture 7: \(V(\hat{x}) = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{Q_i}{r_i} \rightarrow V(\hat{x}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dQ}{r} \)

• Lecture 8: \(C = \frac{Q}{V} \) and \(U = \frac{1}{2} CV^2 \)

• Lecture 9: \(C_\parallel = C_1 + C_2 \) and \(C_{\text{series}} = \left(\frac{1}{C_1} + \frac{1}{C_2} \right)^{-1} \)

• But wait! There’s more...
 – No \(\vec{E} \) field inside a conductor
 – Principle of superposition
 – Surface charge densities
 – \(\vec{E} \) and \(V \) for example geometries
 – Work and energy
 – Dielectrics and \(\varepsilon = \kappa \varepsilon_0 \)
 – Lots of examples and clicker questions...
Electrostatic Equilibrium

• No net motion of charge
• Insulators:
 – No free charges
• Conductors:
 – Charges are pushed by any electric field until their own electric field cancels the original one
 – The motion stops when charges accumulate at a surface
 – The net electric field in the conductor is zero
• What if charge is added to or removed from a surface as quickly as it accumulates?
 – The charge will continue to flow...
 – Not a state of electrostatic equilibrium
Electric Current

• When the motion of charge carriers are not restricted, they will flow.
• By convention, the direction of an electric current is in the direction that positive charge carriers move:

![Diagram showing the flow of positive charge carriers from a more negative to a more positive region, representing the flow of current, I.](image)
Electric Current

• If they are negatively charged, then the current is opposite their motion:

• In metals, the charge carriers are electrons
• In chemical solutions or ionized gasses, the charge carriers can be both positive and negative.
Electric Current

- Electric current is the net positive charge moving across a surface per unit time:

\[I = \frac{\Delta Q}{\Delta t} \]

Units: Amperes = \(\frac{\text{Coulombs}}{\text{second}} \)
Drift Velocity

- Motion of individual charges is usually not uniform:

\[v_D = \frac{\Delta x}{\Delta t} \]

The average distance moved per unit time is the drift velocity:

- With \(\vec{E} \)
- Without \(\vec{E} \)
Drift speed, total charge and current

\[n = \frac{\text{# of charge carriers}}{\text{unit volume}} \]

\[q = \text{charge of each carrier} \]

\[v_D = \text{drift velocity} \]
Drift speed, total charge and current

\[
\begin{align*}
\Delta Q &= n \, q \, \Delta V \\
\Delta V &= A \, \nu_D \Delta t \\
I &= \frac{\Delta Q}{\Delta t} = n \, q \, A \, \nu_D \Delta t \\
&= n \, q \, A \, \nu_D
\end{align*}
\]
Example

• What is the drift velocity in #12 AWG copper wire carrying 1 ampere of current?
 – What’s the diameter of #12 AWG???
 • Google “wire gauge”... it’s roughly 2 mm
 – How many charge carriers?
 • Assume one charge carrier per copper atom
 • How many copper atoms per unit volume?
 • How many copper atoms per unit mass?

Atomic mass: \(m = 63.546 \, g/mol \)
Density of copper: \(\rho = 8.94 \, g/cm^3 \)
Current Density

• The flow of charge might not be uniformly across a surface
 – The magnitude of the local current might change
 – The direction of the drift velocity could change

• Current: \(I = n q \nu_D A \)

• Current density: \(\vec{J} = n q \vec{v}_D \)

• They are related:

\[
I = \int_S \vec{J} \cdot d\vec{A}
\]
Resistance

• Electrons in a metal do not accelerate indefinitely
 – They eventually hit an atom in the metal
 – The collision is inelastic and the electron loses all, or some of its energy

• Instantaneous vs average velocity:

• Resistance is a property of a material related to how rapidly charge carriers lose energy
Resistance

- The greater the current, the more energy is transferred to the material through inelastic collisions.
- Electric potential difference: $\Delta V \propto I$

\[
\Delta V = R \ I \quad R = \frac{\Delta V}{I}
\]

Ohms = \frac{Volts}{Ampere}
Ohm’s Law

- Potential difference is proportional to current
 \[\Delta V = I \cdot R \]
- This is usually a good approximation...

\[\text{ohmic} \] \quad \text{non-ohmic} \]
Ohm’s Law

• Potential difference is proportional to current
 \[\Delta V = I \cdot R \]

• This is usually a good approximation...

\[R(I) = \frac{\Delta V}{\Delta I} \]

ohmic

non-ohmic
Resistance depends on geometry

- Resistance is proportional to ΔL
- Resistance is inversely proportional to A
- Resistivity, ρ, is independent of geometry

\[R = \frac{\rho \Delta L}{A} \]
Resistivity Depends on Temperature

• In general, resistivity increases with temperature
 \[\Delta \rho \propto \Delta T \]

• The temperature coefficient, \(\alpha \), is defined as the fractional change in resistance:
 \[\alpha = \frac{1}{\rho} \frac{\Delta \rho}{\Delta T} \]

• Resistivity and the temperature coefficient are usually given for a particular reference temperature (for example, 20 °C)
Resistivities and Temperature Coefficients

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity, ρ ($\Omega \cdot m$)</th>
<th>Temp. coeff., α (K^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>1.6×10^{-8}</td>
<td>3.8×10^{-3}</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7×10^{-8}</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>W</td>
<td>5.5×10^{-8}</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>Si</td>
<td>640</td>
<td>-7.5×10^{-2}</td>
</tr>
<tr>
<td>Si, n-type</td>
<td>8.7×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Si, p-type</td>
<td>2.8×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>glass</td>
<td>10^{10}–10^{14}</td>
<td></td>
</tr>
</tbody>
</table>
Temperature Dependence

\[\rho - \rho_0 = \rho_0 \alpha (T - T_0) \]
\[\rho(T) = \rho_0 (1 + \alpha (T - T_0)) \]

- Also true for resistance: \(R = \rho L/A \)

\[R - R_0 = R_0 \alpha (T - T_0) \]
\[R(T) = R_0 (1 + \alpha (T - T_0)) \]
Example

• What is the resistance of a 10 cm long Tungsten wire with a diameter of 0.2 mm at 20 °C and at 3000 K?

\[\rho_0 = 5.5 \times 10^{-8} \ \Omega \cdot m \]
\[\alpha = 4.5 \times 10^{-3} \ K^{-1} \]
Rate of Energy Loss

• Charges moving through a resistor lose energy
 \[\Delta U = q \Delta V = q I R \]

• Total energy lost per unit time:
 \[P = n q A v_D \times I R \]
 \[P = I^2 R \]

• Electric potential energy is converted into heat.
Clicker Question

• The resistance across the human body is approximately 2 $k\Omega$
• If it takes only 50 mA of current to kill a human, what voltage could be lethal?

(a) 0.1 Volts (b) 1 Volt
(c) 10 Volts (d) 100 Volts
(e) 1000 Volts
Electric Current

- A chemical battery is a *source* of electric potential
 - The chemical reaction creates a potential difference across the poles:

![Image of a lemon with a positive and negative sign](image)

- Positive charges at the + end have a greater electric potential than positive charges at the – end.

- There must be an electric field between the poles.

- If free charges were present, they would be accelerated by the electric field – the field does work on the charges.

- Their potential energy decreases as they move towards the – pole.

- The chemical reaction maintains a constant potential difference.