PURDUE DEPARTMENT OF PHYSICS

Physics 22000 General Physics

Lecture 4 – Applying Newton's Laws

Fall 2016 Semester Prof. Matthew Jones

Review of Lectures 1, 2 and 3

• Algebraic description of linear motion with constant acceleration:

$$x(t) = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$$
$$v_x(t) = v_{0x} + a_xt$$

- Newton's Laws:
 - 1. In an inertial reference frame, the motion of an object remains unchanged when there is no net force acting on it.
 - 2. Acceleration is proportional to the net force and inversely proportional to the mass of an object.
 - 3. Forces come in pairs, but act on different objects.

Review of Lectures 1,2 and 3

• We can relate velocity, distance and acceleration at any point in time:

$$2 a_x(x - x_0) = v_x^2 - v_{0x}^2$$

• Average acceleration:

$$a_x = \frac{v_x^2 - v_{0x}^2}{2(x - x_0)}$$

• The force acting on an object of mass m that will result in this acceleration is $F_x = ma_x$.

Example

- You are approaching a red light. You slow down from 50 km/h to rest over a distance of 100 m.
- If your mass is 80 kg, what force do you feel?
 You are the system object

- The seat and the seat belt apply the force

$$F = \frac{(80 \ kg) \left(0 - \left[\frac{(50 \ km/h)(1000 \ m/km)}{3600 \ s/h}\right]^2\right)}{2(100 \ m-0)} = 77 \ N$$

Motion and Forces in More than One Dimension

- So far we have mainly considered motion in only one dimension.
- We picked a coordinate axis (with an origin and a direction) to define the observer's reference frame.
- Newton's second law for the components along the xaxis:

$$a_x = \frac{\sum F_x}{m}$$

 We can analyze motion and forces in more than one dimension by considering each component along different coordinate axes separately.

Breaking Forces into Scalar Components

- We can replace any force \vec{F} into two perpendicular forces along the x- and y-axes, so long as they add graphically to equal \vec{F} .
- We represent these two forces by scalar components:
 - F_{χ} is the component along the x-axis
 - F_y is the component along the y-axis
- Components can be positive or negative, depending on whether they point in the + or – direction.

Newton's Second Law in Two Dimensions

- If possible, we might pick the direction of the xaxis to be in the direction of the acceleration.
- Then the component of the acceleration along the other axis will be zero.
- This would simplify the problem, but might not always be possible.
- Think carefully about which choice of geometry makes the problem easier to analyze!

Example: Determining Forces an Acceleration

- Princess Anna Arkadievna Karenina pushes a 2.0 kg book onto a slippery wall, exerting a force of 21.0 N $\vec{F}_{A=B} = 21.0$ N at an angle of 45° above the horizontal.
- What is the normal force of the wall on the book?
- Does the book slide up or down the wall?

18

• The acceleration in the x-direction is zero - the book can only slide up and down the wall $a_{B,x} = \frac{\sum F_x}{m_B} = \frac{F_{A \text{ on } B,x} + N_W \text{ on } B_x + F_E \text{ on } B_x}{m_B} = 0$ - But $F_E \text{ on } B_x = 0$ because gravity only has a component in the vertical direction. $F_{A \text{ on } B,x} + N_W \text{ on } B_x = 0$ $F_{A \text{ on } B,x} = (21 \text{ N}) \cos 45^\circ = 14.8 \text{ N}$ $N_W \text{ on } B_x = -14.8 \text{ N}$

(it points in the –x direction)

20

