PURDUE DEPARTMENT OF PHYSICS Physics 22000 General Physics

Lecture 25 – Waves

Fall 2016 Semester Prof. Matthew Jones

Final Exam									
			Examination Schedule						
UNITIME Filter	5					lick here to change the session / re			
Term: Fall 2	016 (PWL)	Exam	s: Final		. Subject	PHYS · Apply			
Fall 2016	(PWL) final Course	examinat CRN	ions (PHYS) Section	Date	Time	Room			
PHYS	17200			Wed 12/14	1:00p - 3:00p	LAMB F101			
PHYS	17200H	26979	26979-H01	Mon 12/12	8:00a - 10:00a	PHYS 114			
PHYS	21400	26984	26984-001	Tue 12/13	10:30a - 12:30p	PHYS 114			
PHYS	21500	26987	26987-001	Fri 12/16	1:00p - 3:00p	PHYS 112			
PHYS	21800	16840	16840-014	Mon 12/12	7:00p - 9:00p	HIKS B848			
PHYS	21800	26997	26997-001	Fri 12/16	1:00p - 3:00p	PHYS 114			
PHYS	21900	27009	27009-001	Wed 12/14	1:00p - 3:00p	PHYS 112			
PHYS	22000			Fri 12/16	1:00p - 3:00p	LAMB F101			
				Wed 12/14	1:00p - 3:00p	LILY 1105			
PHYS	22100								
PHYS PHYS	22100	67161	67161-001	Fri 12/16	8:00a - 10:00a	EE 129			

Wave Motion

Wave motion involves a disturbance produced by a vibrating object (a source). The disturbance moves, or propagates, through a medium and causes points in the medium to vibrate. When the disturbed medium is physical matter (solid, liquid, or gas), the wave is called a mechanical wave.

Reflection of Waves

- When a wave reaches the wall of the container or the end of the Slinky or rope, it reflects off the end and moves in the opposite direction.
 - When a wave encounters any boundary between different media, some of the wave is reflected back.

Mathematical Description of Waves

(a)

- A wave can be created in a rope by a motor that vibrates the end of a rope up and down, producing a transverse wave.
- The displacement is described by a sinusoidal function of time:

 $y = A \cos\left(\frac{2\pi}{T}t\right)$

A snapshot of a wave at one instant in time

Mathematical Description of Waves

Period T in seconds is the time interval for one complete vibration of a point in the medium anywhere along the wave's path.

Frequency $\,f$ in Hz $({\rm s}^{-1})$ is the number of vibrations per second of a point in the medium as the wave passes.

Amplitude *A* is the maximum displacement of a point of the medium from its equilibrium position as the wave passes.

Speed v in m/s is the distance a disturbance travels during a time interval, divided by that time interval.

Mathematical Description of a Traveling Sinusoidal Wave

• We know the source oscillates up and down with a vertical displacement given by:

$$y = A \cos\left(\frac{2\pi}{T}t\right)$$

We can mathematically describe the disturbance y(x, t) of a point of the rope at some positive position x to the right of the source (at x = 0) by:

$$y(x,t) = A\cos\left[\frac{2\pi}{T}\left(t - \frac{x}{v}\right)\right]$$

Wave Speed

- The speed of a wave on a string depends on
 - The mass per unit length (µ): waves propagate more quickly on a light string
 - The tension (T): waves propagate more quickly when the string is tight

$$v = \sqrt{\frac{T}{\mu}}$$

Amplitude and Energy in a Two Dimensional Medium

- A beach ball bobs up and down in water in simple harmonic motion, producing circular waves that travel outward across the water surface in all directions.
 - The amplitudes of the crests decrease as the waves move farther from the source.

13

Amplitude and Energy in a Two Dimensional Medium

- The circumference of the second ring is two times greater than the first, but the same energy per unit time moves through it.
 - The energy per unit circumference length passing through the second ring is one-half that passing through the first ring.

Two-dimensional waves produced by a point source

Two-dimensional waves produced by a point source The energy per unit circumference length and per unit time crossing a line perpendicular to the direction that the wave travels decreases as 1/r, where r is the distance from the point source of the wave.

Three-Dimensional waves produced by a point source

- The area of the second sphere is four times the area of the first sphere, but the same energy per unit time moves through it.
 - The energy per unit area through the second sphere is onefourth that through the first sphere.

16

18

Three-dimensional waves produced by a point source

Three-dimensional waves produced by a point source The energy per unit area per unit time passing across a surface perpendicular to the direction that the wave travels decreases as $1/r^2$, where r is the distance from the point source of the wave.

Wave Power and Wave Intensity

• The intensity of a wave is defined as the energy per unit area per unit time interval that crosses perpendicular to an area in the medium through which it travels:

Intensity = $\frac{Energy}{Time \cdot Area} = I = \frac{\Delta U}{\Delta t \cdot A} = \frac{P}{A}$

• The unit of intensity / is equivalent to joules per second per square meter or watts per square meter.

Reflection and Impedance

- If you hold one end of a rope whose other end is fixed and shake it once, you create a transverse traveling incident pulse.
 - When the pulse reaches the fixed end, the reflected pulse bounces back in the opposite direction.
 - The reflected pulse is inverted—oriented downward as opposed to upward.
- What happens to a wave when there is an abrupt change from one medium to another?

Impedance

- Impedance characterizes the degree to which waves are reflected and transmitted at the boundary between different media.
- Impedance is defined as the square root of the product of the elastic and inertial properties of the medium: Impedance = Z = \sqrt{(Elastic property)(Inertial property)}

Ultrasound

- Ultrasound takes advantage of the differing densities of internal structures to "see" inside the body.
 - The impedance of tissue is much greater than that of air. As a result, most of the ultrasound energy is reflected at the air-body interface and does not travel inside the body.
 - To overcome this problem, the area of the body to be scanned is covered with a gel that helps "match" the impedance between the emitter and the body surface.

24

Superposition Principle

- We have studied the behavior of a single wave traveling in a medium and initiated by a simple harmonic oscillator.
 - Most periodic or repetitive disturbances of a medium are combinations of two or more waves of the same or different frequencies traveling through the same medium at the same time.
- Now we investigate what happens when two or more waves simultaneously pass through a medium.

Superposition Principle

- Imagine we have two vibrating sources in water, each of which sends out sinusoidal waves.
 - Consider point C in the figure.

25

Superposition Principle

- Imagine we have two vibrating sources in water, each of which sends out sinusoidal waves.
 - Consider point D in the figure.

Superposition principle for waves

- The process in which two or more waves of the same frequency overlap is called interference.
 - Places where the waves add to create a larger disturbance are called locations of constructive interference.
 - Places where the waves add to produce a smaller disturbance are called locations of destructive interference.

Loudness and intensity

- Loudness is determined primarily by the amplitude of the sound wave: the larger the amplitude, the louder the sound.
 - Equal-amplitude sound waves of different frequencies will not have the same perceived loudness to humans.
- To measure the loudness of a sound, we measure the intensity: the energy per unit area per unit time interval.

Intensity Level

- Because of the wide variation in the range of sound intensities, a quantity called intensity level is commonly used to compare the intensity of one sound to the intensity of a reference sound.
- Intensity level is defined on a base 10 logarithmic scale as follows:

$$\beta = \log_{10} \frac{I}{I_0}$$

32

Intensities and Intensity Levels of Common Sounds

Source of sound	$\frac{\text{Intensity}}{(W/m^2)}$	Intensity level (dB)	Description
Large rocket engine (nearby)	10 ⁶	180	
Jet takeoff (nearby)	103	150	
Pneumatic riveter; machine gun (nearby)	10	130	
Rock concert with amplifiers (2 m); jet takeoff (60 m)	1	120	Pain threshold
Construction noise (3 m)	10-1	110	
Moving subway train (nearby)	10-2	100	
Heavy truck (15 m)	10^{-3}	90	Constant exposure
Niagara Falls (nearby)	10^{-3}	90	endangers hearing
Noisy office with machines; inside an average factory	10 ⁻⁴	80	
Busy traffic	10-5	70	
Normal conversation (1 m)	10-6	60	
Quiet office	10-7	50	Quiet
Library	10-8	40	
Soft whisper (5 m)	10-9	30	
Rustling leaves	10-10	20	Barely audible
Normal breathing	10-11	10	
	10-12	0	Hearing threshold

Pitch, frequency and complex sounds

- Pitch is the perception of the frequency of a sound.
 - Tuning forks of different sizes produce sounds of approximately the same intensity, but we hear each as having a different pitch.
 - The shorter the length of the tuning fork, the higher the frequency and the higher the pitch.
- Like loudness, pitch is not a physical quantity but rather a subjective impression.

Complex sounds, waveforms and frequency spectra

- An oboe and a violin playing concert A equally loudly at 440 Hz sound very different.
 - Which other property of sound causes this different sensation to our ears?
 - Musical notes from instruments have a characteristic frequency, but the wave is not sinusoidal.

Beat and Beat Frequencies

• Two sound sources of similar (but not the same) frequency are equidistant from a microphone that records the air pressure variations due to the two sound sources as a function of time.

Gauge pressure

Time

Beat and beat frequencies A beat is a wave that results from the superposition of two waves of about the frequency. The beat (the net wave) has a frequency equal to the average of the two frequencies and has variable amplitude. The frequency with which the amplitude of the net wave changes is called the beat frequency f_{beat} it equals the differice in the frequencies of the two waves: $f_{beat} = |f_1 - f_2| \qquad (20.10)$

