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Oscillating Motion

 We have studied linear motion—objects
moving in straight lines at either constant
velocity or constant acceleration.

 \We have also studied objects moving at
constant speed in a circle.

e In this chapter we encounter a new type of
motion, in which both direction and speed
change.



Hooke’s Law

e A spring exerts a force in the direction
opposite to the extension or compression:
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>  Force exerted by the spring

>  Applied force that stretches or compresses the spring



Equilibrium Position

Equilibrium position (or just equilibrium) The position at which a vibrating
object resides when not disturbed. When resting at this position, the sum of the
forces that other objects exert on it is zero. During vibrational motion the object
passes back and forth through this position from two opposite directions.




Restoring Force

Restoring force When an object is displaced from equilibrium, some other ob-
ject exerts a force with a component that always points opposite the direction of the
vibrating object’s displacement from equilibrium. This force tends to restore the
vibrating object back toward equilibrium.




Amplitude

Amplitude The amplitude A of a vibration is the magnitude of the maximum
displacement of the vibrating object from its equilibrium position.




Patterns Observed in Vibrational Motion

 An object passes through the same positions, moving
first in one direction and then in the opposite direction.

 The object passes the equilibrium position at high
speed. When it overshoots, a restoring force exerted
on it by some other object points back toward
equilibrium.

* A system composed of the vibrating object and the
object exerting the restoring force has maximum
potential energy when at extreme positions and
maximum kinetic energy at equilibrium.



Frequency

Frequency The frequency f of vibrational motion is the number of complete
vibrations of the system during one second. Frequency is related to period:

f== (19.1)

The unit for frequency is the hertz (Hz), where 1 Hz = 1vib/s = 1s7".




Kine@matics of Vib(gational Motion

¥ y
pe

¥ (length 1 unit)

e |n an

1 /M
moti ' |
colle
veloc, ©
y y
A ~
a CC e I iy The unit vector .
. rotates about R (length A) gy
the origin at a
t I m e constant rate. R .= Acost
. - ¥ Y\ R,=Asin6
vibra
3m/2
L 1

The acceleration-versus-time is proportional
to the negative of the position-versus-time.



Mathematical Description of Position
as a Function of Time

e Agraph of x = A cos(8) looks very similar to
the position-versus-time graph produced by
the motion detector for a cart on a spring.

This graph has the same shape as the
position-versus-time graph in Figure 19 4a.
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Mathematical Description of Position
as a Function of Time

 We can write the period function x(t) to
represent the position-versus-time graph:

iy Znt
x = A cos T

e Noticethatx=+A att=0...

e [fan objectisatx=0att=0, you can either
adjust the cos function by adding —(rt/2) or
use the sine function.



Simple Harmonic Motion

e Simple harmonic motion (SHM) is motion that
can be described by the following equation:

_ Znt
x = A cos T

e |Itis a mathematical model of motion.



Position of a Vibrating Object as a
Function of Time

Table 19.3 Position of a vibrating object as a function of time.

Angle of the radius

Clock reading t of the Position x of the vector 0 (radians)
vibrating object shown vibrating object shown for the function Value of the function
in Figure 19.4a in Figure 19.4a x = Acos x = Acos @
0(05s) A 0 A
T/4(15) 0 /2 0
T/2(25) —A T —A
37/4 (3 s) 0 3m/2 0
T (45) A 2T A
2T (8 s) A 4ar A
3T (12s) A 6 A
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Position of a Vibrating Object as a

Function of Time
+ |f the position function is given by:

x = Acos| —t
&

* Then the velocity and acceleration functions are:
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* A s the amplitude of the vibration; T is the
period of the vibration.



Dynamics of Simple Harmonic Motion

(a)
. — > X
—A 0 x +A
(b)

The restoring force .
Increases in magnitude
as the object is farther
from equilibrium.
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Spring Forces and Acceleration for a
Cart on a Spring

* According to Hooke's law, the force that the

stretched spring exerts on a cart in the
x-direction Is:

FSDan — _kx
* Using Newton's second law, we get:
—kx k
.= ———X
m m

* The cart's acceleration a, is proportional to the
negative of its displacement x from the
equilibrium position.



Period of Vibrations of a Cart Attached

to a Spring
Starting with:

L ]

Tk __ X

a, = = — —X

-1

And using:

x=Acos<2—Wt> — 2_77 2A 2_77
T a, = - COS Tt
We get:
T= 2. | =
—_ T —_—
k

In this expression for period, there is no
dependency on the amplitude.
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The Frequency of Vibration of an
Object Attached to a Spring

e Using the equation T = 2m/m/k and the
relation f=1/T, we find

—
o 1 |k
2n\lm

 We assume that the spring obeys Hooke’s law,
that the spring has zero mass, and that the
cart is a point-like object

 We also ignore friction.



Energy of Vibrating Systems

e As the cart-spring system vibrates, the energy
of the system continuously changes from all
elastic to all kinetic.

Table 19.4 Variation of energy during one vibration.
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reading potential Kinetic Total energy
t Displacement energy U, energy K U,
1 1 1
57 —A Phal 0 Usr = -, kA’
1 1 2
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Relationship Between Amplitude and
Maximum Speed

e Using the equation

1 1 1 1
U= EkAZ = Emvﬁwx = Emvz +Ekx2

we can solve for v2,

k
Vmax = 4 E
N
e This makes sense conceptually:
— When the mass of the cart is large, it should move slowly.
— If the spring is stiff, the cart will move more rapidly.




The Simple Pendulum

e A pendulum is a vibrating system in which the motion is very
apparent.

e Consider a simplified model of a pendulum system that has a
compact object (a bob) at the end of a comparatively long and

massless string and that undergoes small-amplitude
vibrations.

— This idealized system is called a simple pendulum

H1Boh



The Simple Pendulum

* Two objects interact |
with the bob of the I
pendulum

— The string S exerts a
force that is always
perpendicular to the
path of the bob

— Earth always exerts a
downward
gravitational force.

(c)




The Simple Pendulum in Relation to
the Cart on a Spring

* The motion of the pendulum has the same
patterns as the motion of the cart on a spring:

— It passes the equilibrium position from two
different directions.

— There is a restoring force exerted on the bob.

— The system's energy oscillates between maximum
potential and maximum kinetic.



Energy of a Simple Pendulum

e Gravitational potential energy:

N
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Energy of a Simple Pendulum

e Simple pendulum:
1 1 1 1

EF = — 2 _ L 2 — LZ 2 _ L 2
va ng 6 2m w ng 0
e Compare this with the mass and the spring:
E = —mv? + = kx?
= va > X

* Frequency:

N At




Frequency and Period of a Simple

Pendulum

* Frequency:
1 g
J = 271\/;

e Period:

L
T =21 |—
\lg

 The period does not depend on the mass or
the amplitude.



The Physical Pendulum

%

The kinetic energy is K = %Ia)2

. . 1
The moment of inertiais I = gmL2
The gravitational force acts through the center of mass

(Y w2+ im a L2 e
U—2 (3)w +2m928 - T =2xm 3g



Damped and Undamped Oscillations

* You can observe 2 =
the effects of | = )
friction on a simple k - |
system. z

e The viscous |
damping force is k = ’f\vf\vnv,\v,.
proportional to
velocity. 2

= W
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Damping

e The phenomenon of decreasing vibration
amplitude and increasing period is called

damping.

A

Time

Position

 Damping is a useful aspect of the design of
vehicles and bridges.
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Including Friction in Vibrational

Motion *
e A weakly damped system \ [\ [\ [\ f
continues to vibrate for : \/ U \/ \VE + Time
many periods.

 In an overdamped system,
the vibrating system takes a 0
long time to return to the 1
equilibrium position, if it
ever does.

e |n a critically damped
system, the vibrating object
returns to equilibrium in ©
the shortest time possible. i

Critically damped oscillator




Mechanical Waves

e \Waves and wave fronts:

(a)

Beach ball vibrates

Top view down and up once.

4O -
b\

Wave front

Side view

. P

Wave front

(b)

Vibrating beach ball

Top view creates outward

moving wave fronts.

)
1
1
Ratna w2 22 e e

Wave fronts

-~ - - -
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Wave Motion

Wave motion involves a disturbance produced by a vibrating object (a source).
The disturbance moves, or propagates, through a medium and causes points in the
medium to vibrate. When the disturbed medium is physical matter (solid, liquid,

or gas), the wave is called a mechanical wave.
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Two Kinds of Waves

Longitudinal and transverse waves In a longitudinal wave the vibrational
motion of the particles or layers of the medium is parallel to the direction of
propagation of the disturbance. In a transverse wave the vibrational motion of the
particles or layers of the medium is perpendicular to the direction of propagation

of the disturbance.

The vibration direction is parallel ¥
to the propagation direction for a _ . .
> longitudinal wave. N__ | Vibration direction
. - - .< .
Direction of Vibration
wave propagation direction

T e |
OO (£ Precton of et propeeador
P % The vibration direction and propagation

Compression Less compression direction are perpendicular for a transverse wave.
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Reflection of Waves

A pulse moves toward the fixed end of a rope.

e When a wave reaches i

f i

the wall of the container -
or the end of the Slinky (
or rope, it reflects off the
end and moves in the (
opposite direction. t

— When a wave encounters
any boundary between
different media, some of

the wave is reflected back. { >

The pulse reflects off the fixed end.
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Mathematical Description of Waves

A wave can be created in a

rope by a motor that

vibrates the end of a rope
up and down, producing a

transverse wave.

The displacement is
described by a sinusoidal
function of time:

= A Znt
y =4 cos|—

()
A snapshot of a wave at one instant in time

Y 4 Disturbance travels

T_{ : ..
S =

---- Point on rope vibrates

(b)

The displacement-versus-time of one position
on the rope (the source position)

A

A ™
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Mathematical Description of Waves

Period T in seconds is the time interval for one complete vibration of a point in
the medium anywhere along the wave’s path.

Frequency fin Hz (s™') is the number of vibrations per second of a point in the
medium as the wave passes.

Amplitude A is the maximum displacement of a point of the medium from its
equilibrium position as the wave passes.

Speed v in m/s is the distance a disturbance travels during a time interval, divided
by that time interval.

37




Mathematical Description of a
Traveling Sinusoidal Wave

* We know the source oscillates up and down with a
vertical displacement given by:

_ 27‘[t
y = A cos 7

 We can mathematically describe the disturbance y(x,
t) of a point of the rope at some positive position x to
the right of the source (at x = 0) by:

y(x,t) = A cos ZTH (t — %)]



Wavelength

Wavelength A equals the distance between two nearest points on a wave that at
any clock reading have exactly the same displacement and shape (slope). It is also
the distance between two consecutive wave fronts:

A= Tp= (20.3)

f
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Mathematical Description of a
Traveling Sinusoidal Wave

Mathematical description of a traveling sinusoidal wave The displacement
from equilibrium y of a point at location x at time ¢ when a wave of period T travels
at speed v in the positive x-direction through a medium is described by the function

y = Acos[Zw(% — %)] (20.4)

The wavelength A of this wave equals A = Tv.
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Amplitude and Energy in a Two
Dimensional Medium

PY A beaCh ba” bObS up Top view of wave crests at one instant in time
and down in water in
simple harmonic
motion, producing
circular waves that
travel outward across
the water surface in

all directions. biesicti bal \

Bobbing
Wave crests

— The amplitudes of the
crests decrease as the
waves move farther

from the source. - @»»

Side view of wave crests at one instant in time

The crest amplitudes are smaller the
farther the wave is from the source.



Amplitude and Energy in a Two
Dimensional Medium

° The circu mfe rence Of Snapshot of wave crests at one instant in time
the second ring is two
times greater than
the first, but the same
energy per unit time
moves through it.

— The energy per unit
circumference length
passing through the
second ring is one-half

that passing through
the first ring.

Bobbing
beach ball

The same energy/time passes two rings that
have different circumferences.
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Two-dimensional waves produced by a
point source

Two-dimensional waves produced by a point source The energy per unit
circumference length and per unit time crossing a line perpendicular to the direc-
tion that the wave travels decreases as 1/r, where r is the distance from the point
source of the wave.
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Three-Dimensional waves produced by
a point source

The sound travels outward, crossing two

e The area of the a——
second sphere is four :
times the area of the
first sphere, but the
same energy per unit
time moves through
it.

— The energy per unit
area through the
second sphere is one-
fourth that through
the first sphere. Fire alarm




Three-dimensional waves produced by
a point source

Three-dimensional waves produced by a point source The energy per unit area
per unit time passing across a surface perpendicular to the direction that the wave trav-
els decreases as 1 /7%, where r is the distance from the point source of the wave.
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Wave Power and Wave Intensity

 The intensity of a wave is defined as the

energy per unit area per unit time interval
that crosses perpendicular to an area in the
medium through which it travels:

_ Energy AU P

Intensity = Time - Area I= At-A A

 The unit of intensity / is equivalent to joules
per second per square meter or watts per

square meter.




