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Static Equilibrium

¢ |n the last lecture, we learned about the
torque that a force can exert on a rigid body.
— We analyzed only rigid bodies that were in static
equilibrium.
* Today, we learn how to describe, explain, and
predict motion for objects that rotate.
— These objects are not in static equilibrium




Rotational Kinematics

Imagine placing several coins at different locations on a
spinning disk.

The direction of the velocity ¥ for each coin Coins at the edge travel farther during Az than
: i hose near the center. The speed v will be
changes continually. those near the center. The speed v will be
greater for coins near the edge than for coins

. g near the center
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Rotational Kinematics

* Consider the various coins located at different
places on a spinning disk...

— The direction of the velocity of each coin changes
continuously.
— A coin that sits closer to the edge moves faster

and covers a longer distance than a coin placed
closer to the center.

* Different parts of the disk move in different
directions and at different speeds.

Rotational Kinematics

All coins turn through the same angle in Az,

There are similarities regardless of their position on the disk.

between the motions of
different points on a rotating
rigid body.

— During a particular time
interval, all coins at the
different points on the
rotating disk turn through
the same angle.

— Perhaps we should
describe the rotational
position of a rigid body
using an angle.




Rotational position, 8 (or angular position)

Rotational position
of a point of interest
with respect to a

reference line

Point of ~7
interest
— x
Reference
Axis of rotation line 6 = 0
coming out of
the page ’

Rotational position 0 The rotational position 6 of a point on a rotating ob-
ject (sometimes called the angular position) is defined as an angle in the counter-
clockwise direction between a reference line (usually the positive x-axis) and a line
drawn from the axis of rotation to that point. The units of rotational position can
be either degrees or radians.
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Units of Rotational Position

* The unit for rotational position is the radian (rad). It
is defined in terms of: s Ot

—The arc length s
— The radius r of the circle

¢ The angle in units of radians is
the ratioof sand r:

S 0o adiany) =
9 — — (measured in radians)
T

* The radian unit has no dimensions; it is the ratio
of two lengths. The unit rad is just a reminder
that we are using radians for angles.

Tips when Working in Radians

You cannot calculate arc
length using s = rf when 0 is
measured in degrees. You must
first convert 6 to radians.

From Eq. (8.1) we see that the arc length for a 1-rad angle equals the
radius of the circle. For example, the 1-rad angle shown in Figure 8.4 is the
ratio of the 2-cm arc length and the 2-cm radius and is simply 1. If you use a
calculator to work with radians, make sure it is in the radian mode.
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Rotational (angular) velocity, w

« Translational velocity is the

rate of change of linear All coins turn through the same angle in At,
position. regardless of their position on the disk.

* We define the rotational y — .y
(angular) velocity v of a rigid y R ¢+ Ar

body as the rate of change of

each point's rotational

position.

— All points on the rigid body
rotate through the same

angle in the same time, so X AN 4
A \ M 4

each point has the same £ AN "4

rotational velocity. & A

Rotational (angular) velocity, w

Rotational velocity @ The average rotational velocity (sometimes called angu-
lar velocity) of a turning rigid body is the ratio of its change in rotational position
A6 and the time interval At needed for that change (see Figure 8.5):

.
At

[ (8.2)
The sign of w (omega) is positive for counterclockwise turning and negative for
clockwise turning, as seen looking along the axis of rotation. Rotational (angular)
speed is the magnitude of the rotational velocity. The most common units for
rotational velocity and speed are radians per second (rad/s) and revolutions per
minute (rpm).

Rotational (angular) acceleration, a

* Translational acceleration describes an object's
change in velocity for linear motion.
— We could apply the same idea to the center of mass of
a rigid body that is moving as a whole from one
position to another.

¢ The rate of change of the rigid body's rotational
velocity is its rotational acceleration.

— When the rotation rate of a rigid body increases or
decreases, it has a nonzero rotational acceleration.




Rotational (angular) acceleration, a

Rotational acceleration @ The average rotational acceleration a (alpha) of a
rotating rigid body (sometimes called angular acceleration) is its change in rota-
tional velocity Aw during a time interval At divided by that time interval:

.U

a = At (8.3)

The unit of rotational acceleration is (rad/s)/s = rad/s®.

The sign of the rotational acceleration is the same as the sign of
the rotational velocity when the object rotates increasingly faster.

The signs of the rotational acceleration and velocity are opposite
if the object is rotating at an increasingly slower rate.
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Relation Between Translational and
Rotational VeIocitiesT ,

Five people (the dots) hold a stick that rotates

LA rAe (ﬁ) - about a fixed pole .
A A N\ag) T )

" 0+ Ao,

t+ Ar

_An_rde (Lw)_
T T A \ag) T

0,1

This person

moves fastest

\
= Stick
.

Pole This person moves slowest

You get the familiar translational quantities for motion along the cir-
cular path by multiplying the corresponding angular rotational quantities by
the radius r of the circle.

Example

* Determine the tangential speed of a stable
gaseous cloud around a black hole.

* The cloud has a stable circular orbit at its
innermost 30-km radius. This cloud moves in a
circle about the black hole about 970 times per
second.

vy =T
= (30 x 103m)(2m)(970s71)
=1.83 x108m/s
(60% the speed of light)




Rotational Motion at Constant Angular
Acceleration

* B, is an object's rotational position at t, = 0.

* w, is an object's rotational velocity at t, = 0.

¢ 0 and w are the rotational position and the rotational
velocity at some later time t.

* ais the object's constant rotational acceleration
during the time interval from time 0 to time t.

Translational motion Rotational motion
Ve = vox + ad o= w, + at (8.6)
1 1
X=X+ vt + Za,# 0 =0, + wt + zatf (8.7)
2a(x = x0) = % ~ V5 2a(6 — ) = o’ — w5 (8.8)
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Rotational Motion at Constant
Acceleration

Rotational position 6 is positive if the object has rotated

counterclockwise and negative if it has rotated clockwise.

* Rotational velocity w is positive if the object is rotating
counterclockwise and negative if it is rotating clockwise.

¢ The sign of the rotational acceleration a depends on how the

rotational velocity is changing:

— o has the same sign as w if the magnitude of w is
increasing.

— o has the opposite sign of w if the magnitude of w is

decreasing.

Torque and Rotational Acceleration

* When you push on the front
of a bicycle tire, directly
towards the axis of rotation,
a force is applied but it has
no effect on the rotation of
the wheel.

There is no torque applied
because the force points
directly through the axis of
rotation.




Torque and Rotational Acceleration

When you push lightly and
continuously on the outside
of the tireina
counterclockwise (ccw)
direction tangent to the tire,
the tire rotates ccw faster
and faster.

The pushing creates a ccw
torque. The tire has an
increasingly positive
rotational velocity and a
positive rotational
acceleration.
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Torque and Rotational Acceleration

When you stop
pushing on the
wheel, it continues to
rotate ccw at a
constant rate.

The rotational
velocity is constant
and the rotational
acceleration is zero.

Torque and Rotational Acceleration

With the wheel rotating
in the ccw direction, you
gently and continuously
push in the clockwise
(cw) direction against tht
tire.

The rotational speed in
the ccw direction
decreases.

This is a cw torque
producing a negative
rotational acceleration.




Torque and Rotational Acceleration

* The experiments indicate a zero torque has no
effect on rotational motion but a nonzero
torque does cause a change.

— If the torque is in the same direction as the

direction of rotation of the rigid body, the object's
rotational speed increases.

— If the torque is in the opposite direction, the
object's speed decreases.
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Torque and Rotational Acceleration
Changes in rotational velocity Rotational acceleration depends on net torque.
The greater the net torque, the greater the rotational acceleration.

¢ This is similar to what we learned when studying
translational motion.

* A non-zero net force needs to be exerted on an
object to cause its velocity to change.

* The translational acceleration of the object was
proportional to the net force.
— The constant of proportionality was the mass
— What is analogous to mass for rotational motion?

Rotational Inertia

Axis of rotation

“le “le

Cylinder rotates
when string
pulls on it. e

_2 Force exerted

S

by the string

¢ Pull each string and compare the rotational acceleration for
the apparatus shown on the left and right.
— The rotational acceleration is greater for the system on the left
because the masses are closer to the axis of rotation.
— The arrangement on the right has a greater rotational ineria

— The same torque applied to the right results in a lesser
rotational acceleration.




Rotational Inertia

* Rotational inertia is the physical quantity

characterizing the location of the mass

relative to the axis of rotation of the object.

— The closer the mass of the object is to the axis of
rotation, the easier it is to change its rotational
motion and the smaller its rotational inertia.

— The magnitude depends on both the total mass of
the object and the distribution of that mass about
its axis of rotation.
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Rotational Inertia

Rotational inertia for a point-like object of mass m
rotating a distance r about a fixed axis is defined by
I =mr?
When subjected to a net torque, the resulting angular
acceleration is
1 1
A=——c— =T
mr2yt Iyt
Notice how similar this is to Newton’s second law for
translational motion:
N 1
a= =
mYyF

Newton’s Second Law for Rotational
Motion of Rigid Bodies

The rotational inertia y
of a rigid body about .

some axis of rotation u ’ %
is the sum of the PN S
rotational inertias of e

the individual point- nertiaasthis. = e,

like objects that X
make up the rigid / J——

body. A




Calculating Rotational Inertia

* The rotational inertia of the whole leg is
I=mri+ mrd+ ...+ mri+ ...+ mygris
* There are other ways to perform the
summation
— Integral calculus
— Numerical methods
— Experimental measurement
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Expressions for the Rotational Inertia
of Typical Objects
Table 8.6 Expressions for the rotational inertia of standard shape objects.

R~

< 5 salid
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& (iywheel)
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cylinder

“Thin rod, axis
through end

Expressions for the Rotational Inertia
of Typical Objects

Table 8.6 Expressions for the rotational inertia of standard shape objects. (Continued)
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Rotational Form of Newton’s Second Law

Rotational form of Newton’s second law One or more objects exert forces
on a rigid body with rotational inertia I that can rotate about some axis. The sum
of the torques 37 due to these forces about that axis causes the object to have a
rotational acceleration a:

a =37 (8.11)
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Newton’s Second Law

By writing Newton's second law in the form
Fo,ons + Fo,ons T -+ + Fo ons

ms

= 1
ds =

=
—SFE =
g ons

we see the cause-effect relationship between the net force Zﬁons exerted
on the system and the system’s resulting translational acceleration ds. The

same idea is seen in Eq. (8.11), only applied to the rotational acceleration:
1 Tttt
a=-S;=-L "2 ' 7n

I I

The net torque %7 produced by forces exerted on the system causes its
rotational acceleration a.

Rotational Momentum

* Afigure initially spins = =
p|my |y

slowly with her leg and

arms extended.

— Initial rotational inertia
is large and w is small.

* She brings her arms
and legs in towards the
axis of rotation and
spins much faster.

— Final rotational inertia
is small and w is large.
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Rotational Impulse and Rotational

Momentum
* Rotational momentum is defined
L=Iw
* Conservation of rotational momentum:

Li+z‘[ Atsz

* When there is no external torque acting on the
system,

Lf = Li or Ifa)f = Iia)i
¢ Rotational momentum is frequently also called
angular momentum.
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Rotational Momentum is a Vector

* Rotational velocity
Circle fingers in direction of rotation. Thumb
and momentum are i in e disection of rotational momentun
vector quantities. 4
— They have magnitude
and direction N
¢ The direction can be
found by applying
the right-hand rule:

Rotational Kinetic Energy

Rotational kinetic energy The rotational kinetic energy of an object with rota-
tional inertia I turning with rotational speed @ is

1
Keoionat = 7100 (8.14)

When you encounter a new physical quantity, always check
whether its units make sense. In this particular case the units for I are
kg * m’ and the units for w? are 1/s%. Thus, the unit for kinetic energy is

kg m?/s’ = (kg+m/s’)m = N-m = J, the correct unit for energy.
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Flywheels for Storing and Providing Energy

* Some energy efficient cars have flywheels for
temporarily storing energy.

Claimed to
improve fuel
efficiency by
25%
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Flywheels for Storing and Providing Energy

* Some energy efficient cars have flywheels for
temporarily storing energy.

* In a car with a flywheel, instead of rubbing a
brake pad against the wheel and slowing it down,
the braking system converts the car's
translational kinetic energy into the rotational
kinetic energy of the flywheel.

* Asthe car's translational speed decreases, the
flywheel's rotational speed increases. This
rotational kinetic energy could then be used later
to help the car start moving again.

Storing Energy in a Flywheel
* Suppose a car has a flywheel with a mass of
20 kg and a radius of 20 cm.
* Rotational inertiais: I = %mR2 = 0.4 kg - m?

Solid
cylinder

(flywheel)
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Storing Energy in a Flywheel

* Suppose a 1600 kg car is travelling at a speed of
20 m/s and approaches a stop sign. If it transfers
all its kinetic energy to the flywheel, what will its
final rotational velocity be?

1 1
K= Emvz = Elwz

m ’ 1600 kg 1
wzv\/;:(ZOm/s) W: 1265 s
~ 12000 RPM
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